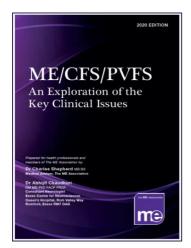


Index of ME/CFS Published Research


An A-Z index of the most important published research

Foreword

Welcome to the ME Association Index of Published ME/CFS Research.

This is an A-Z index of the most important published research studies and selected key documents and articles, listed by subject matter, on myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS). It is correct to 2nd November 2020.

The Index is updated at the end of each month and we publish a weekly update of recent research publications that are also available on the MEA website and social media.

The Index adopts the subject headings used in the MEA Clinical and Research Guide which provides a review of current clinical knowledge and research evidence and is updated annually.

This authoritative and very popular book is written by Dr Charles Shepherd, Hon. Medical Adviser to the ME Association and Dr Abhijit Chaudhuri, consultant neurologist at Queen's Hospital in Romford.

The 2020 edition is now <u>available to order</u> from the MEA website shop. We are pleased to be able to offer free hard copies to health professionals upon

application and it is also available on Kindle.

Please support our vital work

If you would like to support our efforts and ensure we are able to inform, support, campaign, and invest in biomedical research, then please donate today.

Just click the image opposite or <u>click here</u> for one-off donations or to establish a regular payment.

You can even establish your own <u>fundraising event</u> on JustGiving.

Or why not join the ME Association <u>as a member</u> and be part of our growing community?

For a monthly (or annual) subscription you will also receive <u>ME Essential</u> – quite simply the best M.E. magazine!

Contents

F	oreword	1
1.	Nomenclature and definition	5
2	. Epidemiology	8
3.	. Co-morbidity	11
4.	. Biomedical Research	13
	4.1 Biobank UK ME/CFS	13
	4.2 Biomarker Landscape Project	13
	4.3 Cardiac Function	14
	4.4 Exercise physiology/testing	17
	4.5 Gastrointestinal and microbiome	18
	4.6 Gene expression	
	4.7 General reviews	24
	4.8 Genetic predisposition	26
	4.9 Immunology	26
	4.10 Infection	36
	4.11 Ion channels	42
	4.12 Metabolomics	42
	4.13 Miscellaneous	44
	4.14 Mitochondria and energy production	46
	4.15 Muscle	48
	4.16 Neurology: Autonomic nervous system (ANS) dysfunction	50
	4.17 Neurology: Central nervous system and neuroimaging	53
	4.18 Neurology: Hypothalamic and neuroendocrine function	60
	4.19 Neurology: Neuropsychology and cognitive function	63
	4.20 Neurology: Neurotransmitter function	64
	4.21 Pain	65
	4.22 Phenotypes and sub-groups	66
	4.23 Post-Exertional Malaise (PEM)	67
	4.24 Post-mortem research	69
	4.25 Sleep disturbance	69
	4.26 Vision	71

The ME Association Index of Published ME/CFS Research

5.	Psychiatry and psychology	72
6.	Sociology	74
7.	Future research recommendations	75
8.	Clinical assessment, symptoms, and diagnosis	77
	8.1 General	77
	8.2 Investigations	83
	8.3 Physical examination	86
	8.4 Symptoms	88
9.	Management	88
	9.1 Cognitive Behavioural Therapy (CBT)	88
	9.2 Complementary and alternative therapies	92
	9.3 Diet and nutrition	94
	9.4 Exercise, Pacing and activity management	96
	9.5 General management	
	9.6 PACE Trial, The	104
	9.7 Pharmacological treatment	107
	9.8 Pregnancy	119
10). Prognosis and quality of life	119
	10.1 Age	
	10.2 Mortality	119
	10.3 Prognosis and recovery	120
	10.4 Quality of life	121
	10.5 Severe ME	122
11	. Vaccinations	123
12	2. Children and adolescents	125
13	3. Government Documents	136
	13.1 Disability support	136
	13.2 Economic cost to the UK	137
	13.3 General reports, debates, and statements	138
14	4. Healthcare	
Th	ne ME Association: Please support our vital work	141

ME CONNECT

We're here to help

0344 576 5326

Do you need to talk?

ME Connect is the telephone helpline service of the ME Association.

It provides information and support for people with ME and those who live with or care for them.

ME Connect provides a safe and understanding environment for people with ME so that they know they are being heard and understood.

ME Connect is a member of the Helplines Partnership which promotes high standards.

CALL 0344 576 5326

10am-12noon, 2pm-4pm, 7pm-9pm every day of the year

Calls cost the same as other standard landline numbers (starting 01 or 02).

If you have a call package for your landline or mobile phone then
calls will normally come out of your inclusive minutes.

Please note: Research published after June 2020 (the date of the last update to the MEA Clinical and Research Guide or 'Purple Book') is highlighted in purple in the listing below.

1. Nomenclature and definition

Asprusten TT, et al. (2015) Study findings challenge the content validity of the Canadian Consensus Criteria for adolescent chronic fatigue syndrome. Acta Paediatrica 104 (5):498-503 Link:

https://www.ncbi.nlm.nih.gov/m/pubmed/25640602/

Brurberg et al. (2013) Case definitions for chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME): a systematic review. BMJ Open 4 (2). Link: https://bmjopen.bmj.com/content/4/2/e003973

Carruthers BM, et al. (2003) Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Clinical work case definition, Diagnostic and Treatment Protocols. Journal of Chronic Fatigue Syndrome 11(1): 327-338 Link: http://phoenixrising.me/wp-content/uploads/Canadian-definition.pdf

Carruthers BM, et al. (2011) Myalgic Encephalomyelitis: International Consensus Criteria Journal of Internal Medicine 270 (4): 327-338 Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3427890/

Clayton EW. (2015) Beyond Myalgic encephalomyelitis/chronic fatigue syndrome: An IOM report on redefining an illness. *JAMA* 313 (11): 1101-1102 Link: https://jamanetwork.com/journals/jama/article-abstract/2118591

Fukuda K, *et al*. (1994) The Chronic Fatigue Syndrome: A Comprehensive Approach to Its Definition and Study. International Chronic Fatigue Syndrome Study Group. Annals of Internal Medicine 121 (12): 953-959. Link: https://www.ncbi.nlm.nih.gov/pubmed/7978722

Goudsmit EM, Shepard C, et al. (2009) ME: Chronic Fatigue Syndrome or a distinct clinical entity? Health Psychology Update 18 (1): 26-33 Link: http://www.foodsmatter.com/me_and_cfs/cfs_me_causes_general/articles/goudsmit-me-clinical%20entity-10-12.html

Howard H. (2018) Recent insights into 3 under recognized conditions: Myalgic encephalomyelitis—chronic fatigue syndrome, fibromyalgia, and environmental sensitivities—multiple chemical sensitivity. *Canadian Family Physician 64 (6): 413-415.* Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5999262/

Institute of Medicine (2015) Beyond Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Redefining an Illness, Washington, DC: *The National Academies Press*. Link: https://www.ncbi.nlm.nih.gov/pubmed/25695122

Jason et al. (2010) The Development of a Revised Canadian Myalgic Encephalomyelitis Chronic Fatigue Syndrome Case Definition. American Journal of Biochemistry and Biotechnology 6 (2): 120-135. Link: https://thescipub.com/PDF/ajbbsp.2010.120.135.pdf

Jason LA, et al. (2015) Myalgic Encephalomyelitis: Symptoms and biomarkers. Curr Neuropharmacol. 13(5):701-34. Link: https://www.ncbi.nlm.nih.gov/pubmed/26411464

Jason LA, et al. (2015) Reflections on the Institute of Medicine's systemic exertion intolerance disease. Polish Archives of Internal Medicine, 125 (7-8): 576-581. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4826027/

Jason LA, et al. (2016) Are Myalgic Encephalomyelitis and Chronic fatigue syndrome different illnesses? A preliminary analysis. *Journal of Health Psychology* 21(1): 3-15. Link:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4125561/

Jason LA, et al. (2017) Clinical Criteria Versus a Possible Research Case Definition in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis. Fatigue 5 (2): 89-102. Link: https://www.ncbi.nlm.nih.gov/pubmed/29062593

Jason LA and Johnson M (2020) Solving the ME/CFS criteria and name conundrum: the aftermath of IOM. *Fatigue: Biomedicine, Health and Behaviour* 8 (2). Link:

https://www.tandfonline.com/doi/abs/10.1080/21641846.2020.1757809?journal Code=rfta20

Johnston et al. (2013a) The prevalence of chronic fatigue syndrome/ myalgic encephalomyelitis: A meta-analysis. *Journal of Clinical Epidemiology* 5(1):105-10. Link: https://www.ncbi.nlm.nih.gov/pubmed/23576883

Johnston et al. (2013b) Johnston S, Brenu EW, Staines D & Marshall-Gradisnik S. The adoption of chronic fatigue syndrome/myalgic encephalomyelitis case definitions to assess prevalence: a systematic review. *Annual Epidemiology* 23(6):371-6. Link: https://www.ncbi.nlm.nih.gov/pubmed/23683713

Johnston et al. (2016) Epidemiological characteristics of chronic fatigue syndrome/myalgic encephalomyelitis in Australian patients. Journal of Clinical Epidemiology 8:97-107. Link: https://www.ncbi.nlm.nih.gov/pubmed/27279748

Lancet, The (1956) A New Clinical Entity? [Leading article]. The Lancet 267(6926): 789-790. Link:

http://www.thelancet.com/journals/lancet/article/PIIS0140-6736(56)91252-1/abstract?showall=true

The ME Association Index of Published ME/CFS Research

Lancet, The (2015) What's in a name? Systemic exertion intolerance disease [Editorial]. The Lancet 385 (9969): 663. Link: http://www.thelancet.com/journals/lancet/article/PIIS0140-6736(15)60270-7/fulltext

Lane RJM. (2000) Chronic fatigue syndrome: is it physical? *Journal of Neurology, Neurosurgery & Psychiatry* 69(3): 289-289. Link: http://innp.bmj.com/content/69/3/289.1

Lim E and Son C (2020) Review of case definitions for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). *Journal of Translational Medicine* 18 (1): 289. Link: https://pubmed.ncbi.nlm.nih.gov/32727489/

Murga I and Lafuente JV (2019) From neurasthenia to post-exertion disease: Evolution of the diagnostic criteria of chronic fatigue syndrome/myalgic encephalomyelitis. *Atencion Primaria* [Epub ahead of print]. Link: https://www.ncbi.nlm.nih.gov/pubmed/31182238

Nacul L, et al. (2017) Differing case definitions point to the need for an accurate diagnosis of myalgic encephalomyelitis/chronic fatigue syndrome. *Fatigue* 5 (1): 1-4. Link: https://www.ncbi.nlm.nih.gov/pubmed/29250461

O'Leary D (2019) Ethical classification of ME/CFS in the United Kingdom. Bioethics 33 (6): 716-722. Link: https://www.ncbi.nlm.nih.gov/pubmed/30734339

Scartozzi S et al. (2019) Myalgic encephalomyelitis and chronic fatigue syndrome case definitions: effects of requiring a substantial reduction in functioning. *Fatigue: Biomedicine, Health and Behaviour.* Link: https://www.tandfonline.com/doi/abs/10.1080/21641846.2019.1600825

Sharif K, *et al.* (2018) On chronic fatigue syndrome and nosological categories. Clinical Rheumatology. Link: https://www.ncbi.nlm.nih.gov/pubmed/29417255

Studd J and Panay N. (1996) Chronic fatigue syndrome [Letter to the editor]. The Lancet 348(9038): 1384. Link: http://www.thelancet.com/journals/lancet/article/PIIS0140-6736(05)65448-7/fulltext

Sunnquist M, et al. (2017) A Comparison of Case Definitions for Myalgic Encephalomyelitis and Chronic Fatigue Syndrome. *Journal of Chronic Disorders and Management* 2 (2). Link: https://www.ncbi.nlm.nih.gov/pubmed/29104961

Twisk F (2018) Dutch Health Council Advisory Report on Myalgic Encephalomyelitis and Chronic Fatigue Syndrome: Taking the Wrong Turn. Diagnostics 8 (2). Link: https://www.ncbi.nlm.nih.gov/pubmed/29772739

Twisk F (2018) Myalgic Encephalomyelitis (ME) or What? An Operational Definition. *Diagnostics 8* (3). Link: https://www.ncbi.nlm.nih.gov/pubmed/30205585

Twisk F. (2018) Myalgic Encephalomyelitis or What? The International Consensus Criteria. *Diagnostics* 9 (1): 1. Link: https://www.mdpi.com/2075-4418/9/1/1

Twisk FNM (2019) Myalgic Encephalomyelitis, Chronic Fatigue Syndrome, and Chronic Fatigue: Three Distinct Entities Requiring Completely Different Approaches. *Current Rheumatological Reports* 21 (6): 27. Link: https://www.ncbi.nlm.nih.gov/pubmed/31073713

Van Campen L et al. (2020) Validation of the Severity of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome by Other Measures than History: Activity Bracelet, Cardiopulmonary Exercise Testing, and a Validated Activity Questionnaire: SF-36. Healthcare 8 (3). Link: https://www.mdpi.com/2227-9032/8/3/273

World Health Organisation (2020) International Classification of Diseases 11. Link: https://icd.who.int/browse11/l-m/en#/http://id.who.int/icd/entity/569175314

World Health Organisation (2016) *International Classification of Diseases 10*. Link: https://icd.who.int/browse10/2016/en#/G93.3

2. Epidemiology

Bhatia S et al. (2019) A Cross-National Comparison of Myalgic Encephalomyelitis and Chronic Fatigue Syndrome at Tertiary Care Settings from the US and Spain. American Journal of Social Sciences and Humanities 5 (1): 104-115. Link: http://onlinesciencepublishing.com/assets/journal/JOU0022/ART00450/1576732660 AJSSH-2020-5(1)-104-115.pdf

Chandan J et al. (2019) Intimate Partner Violence and the Risk of Developing Fibromyalgia and Chronic Fatigue Syndrome. *Journal of Interpersonal Violence* [Epub ahead of print]. Link:

https://journals.sagepub.com/doi/abs/10.1177/0886260519888515?journalCode = iiva

Chu L, et al. (2019) Onset patterns and course of myalgic encephalomyelitis/chronic fatigue syndrome. *Frontiers in Paediatrics* 7: 12. Link: https://www.ncbi.nlm.nih.gov/pubmed/30805319

Collin SM, *et al.* (2017) Trends in the incidence of chronic fatigue syndrome and fibromyalgia in the UK, 2001–2013: a Clinical Practice Research Datalink study. *Journal of the Royal Society of Medicine* 110 (6): 231-244. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5499564/

Comerford B and Podell R (2019) Medically Documenting Disability in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Cases. *Frontiers in Paediatrics* 7: 231. Link: https://www.ncbi.nlm.nih.gov/pubmed/31334205

Evans M and Jason L (2018) Onset patterns of chronic fatigue syndrome and myalgic encephalomyelitis. Research on Chronic Diseases 2 (1): 001-0030. Link: http://www.openaccessjournals.com/articles/Onset%20patterns%20of%20chronic%20fatigue%20syndrome%20and%20myalgic%20encephalomyelitis.pdf

Estevez-Lopez F, et al. (2018) Prevalence and incidence of myalgic encephalomyelitis/chronic fatigue syndrome in Europe-the Euro-epiME study from the European network EUROMENE: a protocol for a systematic review. *BMJ Open 8 (9)*: e020817. Link: https://www.ncbi.nlm.nih.gov/pubmed/30181183

Estevez-Lopez F et al. (2020) Systematic Review of the Epidemiological Burden of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Across Europe: Current Evidence and EUROMENE Research Recommendations for Epidemiology. *Journal of Clinical Medicine* 9 (5). Link: https://www.mdpi.com/2077-0383/9/5/1557

Fatt S, et al. (2019) The Invisible Burden of Chronic Fatigue Syndrome in the Community: a Narrative Review. *Current Rheumatology Reports* 21: 5. Link: https://link.springer.com/article/10.1007/s11926-019-0804-2

Ghali A et al. (2020) Epidemiological and Clinical Factors Associated With Post-Exertional Malaise Severity in Patients With Myalgic encephalomyelitis/chronic Fatigue Syndrome. *Journal of Translational Medicine* 18 (1): 246. Link: https://pubmed.ncbi.nlm.nih.gov/32571354/

Jason LA, et al. (1999) A community-based study of chronic fatigue syndrome. Archives of Internal Medicine 159 (18): 2129-2137. Link: https://jamanetwork.com/journals/jamainternalmedicine/fullarticle/415556

Lacerda E et al. (2019) A logistic regression analysis of risk factors in ME/CFS pathogenesis. *BMC Neurology* 19 (275). Link: https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-019-1468-2

Lewis I, et al. (2013) Is chronic fatigue syndrome in older patients a different disease? – a clinical cohort study. *European Journal of Clinical Investigation* 43 (3): 302-308. Link: https://www.ncbi.nlm.nih.gov/pubmed/23397955

Li M et al. (2020) Associations of occupational stress, workplace violence and organizational support on chronic fatigue symptoms among nurses. *Journal of Advanced Nursing* [Epub ahead of print]. Link: https://onlinelibrary.wiley.com/doi/abs/10.1111/jan.14312

The ME Association Index of Published ME/CFS Research

Lim EJ et al. (2020) Systematic review and meta-analysis of the prevalence of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). *Journal of Translational Medicine* 28 (1): 100. Link:

https://www.ncbi.nlm.nih.gov/pubmed/32093722

Monden R et al. (2020) Predictors of New Onsets of Irritable Bowel Syndrome, Chronic Fatigue Syndrome and Fibromyalgia: The Lifelines Study. *Psychological Medicine* [Epub ahead of print]. Link: https://pubmed.ncbi.nlm.nih.gov/32546287/

Nacul LC, *et al*. (2011) Prevalence of myalgic encephalomyelitis/ chronic fatigue syndrome (ME/CFS) in three regions of England: a repeated cross-sectional study in primary care. *BMC Medicine* 9: 91. Link: https://www.ncbi.nlm.nih.gov/pubmed/21794183

Njoku MGC, et al. (2007) The Prevalence of Chronic Fatigue Syndrome in Nigeria. *Journal of Health Psychology* 12 (3): 461-474. Link: https://www.ncbi.nlm.nih.gov/pubmed/17439996

Petersen MW et al. (2020) Irritable bowel, chronic widespread pain, chronic fatigue and related syndromes are prevalent and highly overlapping in the general population: DanFunD. *Scientific Reports* 10 (1): 3273. Link: https://www.ncbi.nlm.nih.gov/pubmed/32094442

Slomko J et al. (2019) Prevalence and characteristics of chronic fatigue syndrome/myalgic encephalomyelitis(CFS/ME) in Poland: a cross-sectional study. *BMJ Open* 9 (3). Link: https://www.ncbi.nlm.nih.gov/pubmed/30850404

Strassheim VJ, *et al*. (2018) Defining the prevalence and symptom burden of those with self-reported severe chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME): a two-phase community pilot study in the North East of England. *BMJ Open 8* (9). Link:

https://www.ncbi.nlm.nih.gov/pubmed/30232103

Walsh CM, et al. (2001) A family history study of chronic fatigue syndrome. *Psychiatric Genetics* 11 (3): 123-128. Link: https://www.ncbi.nlm.nih.gov/pubmed/11702053

Valdez AR, et al. (2019) Estimating Prevalence, Demographics, and Costs of ME/CFS Using Large Scale Medical Claims Data and Machine Learning. *Frontiers in Pediatrics* 6: 412. Link:

https://www.ncbi.nlm.nih.gov/pubmed/30671425

Vincent A, et al. (2012) Prevalence, Incidence, and Classification of Chronic Fatigue Syndrome in Olmsted County, Minnesota, as estimated using the Rochester Epidemiology Project. Mayo Clinic Proceedings 87 (12): 1145-1152. Link: https://www.ncbi.nlm.nih.gov/pubmed/23140977

3. Co-morbidity

Boneva RS, et al. (2011) Gynecological History in chronic fatigue syndrome: a population-based case-control study. *Journal of Women's Health* 20(1): 21-28. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3017420/

Boneva RS et al. (2019) Endometriosis as a Comorbid Condition in Chronic Fatigue Syndrome (CFS): Secondary Analysis of Data From a CFS Case-Control Study. Frontiers in Pediatrics 7: 195. Link:

https://www.frontiersin.org/articles/10.3389/fped.2019.00195/full

Castro-Marrero J, et al. (2017) Comorbidity in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis: A Nationwide Population-Based Cohort Study. Psychosomatics 58 (2): 533-543. Link: https://www.ncbi.nlm.nih.gov/pubmed/28596045

Chang CM, et al. (2012) Chronic fatigue syndrome and subsequent risk of cancer among elderly US adults. *Cancer* 118 (23): 5929-5936. Link: https://www.ncbi.nlm.nih.gov/pubmed/22648858

Clauw DJ, et al. (1997) The relationship between fibromyalgia and interstitial cystitis. Journal of Psychiatric Research 31(1): 125-131. Link: https://www.ncbi.nlm.nih.gov/pubmed/9201654

Chen CS, et al. (2014) Chronic fatigue syndrome is associated with the risk of fracture: a nationwide cohort study. Quarterly Journal of Medicine (8): 635 – 641. Link: https://www.ncbi.nlm.nih.gov/pubmed/24619129

Daniels J, et al. (2017) Anxiety and depression in chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME): Examining the incidence of health anxiety in CFS/ME. *Psychology and Psychotherapy* 90 (3): 502-509. Link: https://www.ncbi.nlm.nih.gov/pubmed/28244209

Deale A and Wessely S. (2000) Diagnosis of psychiatric disorder in clinical evaluation of chronic fatigue syndrome. *Journal of the Royal Society of Medicine* 93(6): 310-312. Link:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1298034/

Hanevik K, *et al.* (2014) Irritable Bowel Syndrome and Chronic Fatigue 6 years after Giardia infection: A controlled prospective cohort study. *Clinical Infectious Diseases* 59 (10): 1394-1400. Link:

https://www.ncbi.nlm.nih.gov/pubmed/25115874

He J, et al. (2013) Cerebral vascular control is associated with skeletal muscle pH in chronic fatigue syndrome patients both at rest and during dynamic stimulation. *NeuroImage: Clinical* 2: 168-173. Link: https://www.ncbi.nlm.nih.gov/pubmed/24179772

Litleskare S, et al. (2018) Prevalence of Irritable Bowel Syndrome and Chronic Fatigue 10 Years After Giardia Infection. *Clinical Gastroenterology and Hepatology* [Epub ahead of print] Link: https://www.ncbi.nlm.nih.gov/pubmed/29378314

Loades ME, et al. (2017) The presence of co-morbid mental health problems in a cohort of adolescents with chronic fatigue syndrome. *Clinical Childhood Psychology and Psychiatry* 1: 1359104517736357. Link: https://www.ncbi.nlm.nih.gov/pubmed/29096528

McManimen SL and Jason LA. (2017) Post-Exertional Malaise in Patients with ME and CFS with Comorbid Fibromyalgia. *SRL Neurology and Neurosurgery* 3 (1): 22-27. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5464757/

Mengshoel AM, et al. (2014) Primary Sjögren's Syndrome: Fatigue Is an Ever-Present, Fluctuating, and Uncontrollable Lack of Energy. Arthritis Care & Research 66(8): 1227-1232. Link: https://www.ncbi.nlm.nih.gov/pubmed/24339344

Natelson BH (2019) Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Fibromyalgia: Definitions, Similarities, and Differences. *Clinical Therapeutics* [Epub ahead of print]. Link: https://www.ncbi.nlm.nih.gov/pubmed/30795933

Natelson BH et al. (2019) The Effect of Comorbid Medical and Psychiatric Diagnoses on Chronic Fatigue Syndrome. Annuals in Medicine [Epub ahead of print]. Link: https://www.ncbi.nlm.nih.gov/pubmed/31642345

Nijs J, et al. (2006) Generalized Joint Hypermobility is more common in chronic fatigue syndrome than in healthy control subjects. *Journal of Manipulative Physiology Therapeutics* 29 (1): 32-39. Link: https://www.ncbi.nlm.nih.gov/pubmed/16396727

Ravindran MK, *et al.* (2011) Migraine headaches in Chronic Fatigue Syndrome (CFS): Comparison of two prospective cross-sectional studies. *BMC Neurology* 11 (1): 1-9. Link: https://www.ncbi.nlm.nih.gov/pubmed/21375763

Sinaii N, *et al*. (2002) High rates of autoimmune and endocrine disorders, fibromyalgia, chronic fatigue syndrome and atopic diseases among women with endometriosis: a survey analysis. *Human Reproduction* 17 (10): 2715-2724. Link: https://www.ncbi.nlm.nih.gov/pubmed/12351553

Skowera A, et al. (2001) High prevalence of serum markers of coeliac disease in patients with chronic fatigue syndrome [Correspondence]. *Journal of Clinical Pathology* 54(4): 335-336. Link:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1731400/

Tsai SY, et al. (2019) Increased risk of chronic fatigue syndrome in patients with inflammatory bowel disease: a population-based retrospective cohort study. *Journal of Translational Medicine* 17 (1): 55. Link: https://www.ncbi.nlm.nih.gov/pubmed/30795765

Van Oudenhove L, *et al.* (2011) Factors associated with co-morbid irritable bowel syndrome and chronic fatigue-like symptoms in functional dyspepsia. *Neurogastroenterology & Motility* 23(6): 524. Link: https://www.ncbi.nlm.nih.gov/pubmed/21255194

4. Biomedical Research

4.1 Biobank UK ME/CFS

Lacerda EM, et al. (2017) The UK ME/CFS Biobank for biomedical research on Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Multiple Sclerosis. *Open Journal of Bioresources* 4: 4. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5482226/

Lacerda EM, et al. (2018) The UK ME/CFS Biobank: a disease-specific biobank for advancing clinical research into myalgic encephalomyelitis/chronic fatigue syndrome, *Frontiers in Neurology* [Epub ahead of print]. Link: https://www.frontiersin.org/articles/10.3389/fneur.2018.01026/abstract

4.2 Biomarker Landscape Project

Estevez-Lopez F et al. (2020) Systematic Review of the Epidemiological Burden of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Across Europe: Current Evidence and EUROMENE Research Recommendations for Epidemiology. *Journal of Clinical Medicine* 9 (5). Link: https://www.mdpi.com/2077-0383/9/5/1557

Scheibenbogen C, et al. (2017) The European ME/CFS Biomarker Landscape project: an initiative of the European network EUROMENE. *Journal of Translational Medicine* 15: 162. Link:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5530475/

Pheby D et al. (2020) The Development of a Consistent Europe-Wide Approach to Investigating the Economic Impact of Myalgic Encephalomyelitis (ME/CFS): A Report from the European Network on ME/CFS (EUROMENE). *Healthcare* 8 (2). Link: https://www.mdpi.com/2227-9032/8/2/88

4.3 Cardiac Function

Boissoneault J, et al. (2018) Cerebral blood flow and heart rate variability predict fatigue severity in patients with chronic fatigue syndrome. *Brain Imaging and Behaviour* 13 (3): 789-797. Link:

https://www.ncbi.nlm.nih.gov/pubmed/29855991

Bozzini S, et al. (2018) Cardiovascular characteristics of chronic fatigue syndrome. *Biomedical Reports* 8 (1): 26-30. Link: https://www.ncbi.nlm.nih.gov/pubmed/29399336

Campen CM, *et al.* (2018) Blood volume status in CFS/ME correlates with the presence or absence of orthostatic symptoms. *Frontiers in Paediatrics* [Epub ahead of print]. Link:

https://www.frontiersin.org/articles/10.3389/fped.2018.00352/full

Campen CM and Visser FC (2018) The Abnormal Cardiac Index and Stroke Volume Index Changes During a Normal Tilt Table Test in ME/CFS Patients Compared to Healthy Volunteers, are Not Related to Deconditioning, Journal of Thrombosis and Circulation 107. Link; https://tinyurl.com/y5nb9dyr

Campen CM et al. (2020) Cerebral blood flow is reduced in ME/CFS during head-up tilt testing even in the absence of hypotension or tachycardia: a quantitative, controlled study using Doppler echography. *Clinical Neurophysiology Practise* [Epub ahead or print]. Link: https://www.sciencedirect.com/science/article/pii/S2467981X20300044

Campen CM et al. (2020) Cerebral Blood Flow Is Reduced in Severe Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients During Mild Orthostatic Stress Testing: An Exploratory Study at 20 Degrees of Head-Up Tilt Testing. *Healthcare* 8 (2): 169. Link: https://www.mdpi.com/2227-9032/8/2/169

Campen CM et al. (2020) Cognitive Function Declines Following Orthostatic Stress in Adults With Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). *Frontiers in Neuroscience* [Epub ahead of print]. Link: https://www.frontiersin.org/articles/10.3389/fnins.2020.00688/full

The ME Association Index of Published ME/CFS Research

Van Campen C et al. (2020) Orthostatic stress testing in myalgic encephalomyelitis/chronic fatigue syndrome patients with or without concomitant fibromyalgia: effects on pressure pain thresholds and temporal summation. *Clinical and Experimental Rheumatology* [Epub ahead of print]. Link: https://www.clinexprheumatol.org/abstract.asp?a=15665

Davenport T et al. (2019) Chronotropic Intolerance: An Overlooked Determinant of Symptoms and Activity Limitation in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome? *Frontiers in paediatrics* 7: 82. Link: https://www.frontiersin.org/articles/10.3389/fped.2019.00082/full

Davenport T et al. (2020) Cardiopulmonary responses to exercise in an individual with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome during long-term treatment with intravenous saline: A case study. *Work* 66 (2): 353-359. Link: https://content.iospress.com/articles/work/wor203214?fbclid=lwAR1cFTpQx7hm-0TgXrl9YG6f6ox30nU1AwOj-oyEA3RjJp-pZjjQbeCJ6wc

Escorihuela RM et al. (2020) Reduced heart rate variability predicts fatigue severity in individuals with chronic fatigue syndrome/myalgic encephalomyelitis. *Journal of Translational Medicine* 18: 4. Link: https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-019-02184-z#Tab1

Hollingsworth KG, *et al.* (2010) Impaired cardiovascular response to standing in Chronic Fatigue Syndrome. *European Journal of Clinical Investigation* 40(7): 608-615. Link: http://europepmc.org/abstract/med/20497461

Hodges LD, *et al*. (2017) Physiological measures in participants with chronic fatigue syndrome, multiple sclerosis and healthy controls following repeated exercise: a pilot study. *Clinical Physiology and Functional Imaging*. Link: https://www.ncbi.nlm.nih.gov/pubmed/28782878

Hollingsworth KG, *et al.* (2012) Impaired cardiac function in chronic fatigue syndrome measured using magnetic resonance cardiac tagging. *Journal of Internal Medicine* 271(3): 264-270. Link:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3627316/

<u>Iverson PO et al.</u> (2020) Cardiac Dimensions and Function Are Not Altered among Females with

<u>the Myalgic Encephalomyelitis/Chronic Fatigue Syndrome.</u> Healthcare (Basel). Link: https://pubmed.ncbi.nlm.nih.gov/33081294/

The ME Association Index of Published ME/CFS Research

Larson B et al. (2019) Reproducibility of Measurements Obtained During Cardiopulmonary Exercise Testing in Individuals With Fatiguing Health Conditions: A Case Series. Cardiopulmonary Physical Therapy Journal [Epub ahead of print]. Link:

https://journals.lww.com/cptj/Abstract/publishahead/Reproducibility_of_Measurements Obtained During,99960.aspx

Lee J et al. (2020) Hemodynamics during the 10-minute NASA Lean Test: evidence of circulatory decompensation in a subset of ME/CFS patients. *Journal of Translational Medicine 18* (1): 314. Link: https://pubmed.ncbi.nlm.nih.gov/32799889/

Malfliet A, et al. (2018) Cerebral Blood Flow and Heart Rate Variability in Chronic Fatigue Syndrome: A Randomized Cross-Over Study. Pain Physician 21 (1): E13-E24. Link: https://www.ncbi.nlm.nih.gov/pubmed/29357332

Miwa K and Fujita M. (2011) Small Heart with Low Cardiac Output for Orthostatic Intolerance in Patients With Chronic Fatigue Syndrome. *Clinical Cardiology* 34(12): 782-786. Link: http://onlinelibrary.wiley.com/doi/10.1002/clc.20962/full

Nelson MJ et al. (2019) Evidence of altered cardiac autonomic regulation in myalgic encephalomyelitis/chronic fatigue syndrome: A systematic review and meta-analysis. *Medicine (Baltimore)* 98 (43). Link: https://www.ncbi.nlm.nih.gov/pubmed/31651868

Peckerman A, et al. (2003) Abnormal Impedance Cardiography Predicts Symptom Severity in Chronic Fatigue Syndrome. *The American Journal of the Medical Sciences* 326(2): 55-60. Link: https://www.ncbi.nlm.nih.gov/pubmed/12920435

Scherbakov N et al. (2020) Peripheral endothelial dysfunction in myalgic encephalomyelitis/chronic fatigue syndrome. *ESC Heart Failure* 7 (3): 1064-1071. Link: https://onlinelibrary.wiley.com/doi/full/10.1002/ehf2.12633

Tomas C, et al. (2017) Elevated brain natriuretic peptide levels in chronic fatigue syndrome associate with cardiac dysfunction: a case control study. Open Heart 4 (2): e000697. Link:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5761285/

Vermeulen RCW and Vermeulen van Eck IWG. (2014) Decreased oxygen extraction during cardiopulmonary exercise test in patients with chronic fatigue syndrome. *Journal of Translational Medicine* 12: 20. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3903040/

Vreijling SR et al. (2020) Reduced Heart Rate Variability in Patients with Medically Unexplained Physical Symptoms: A Meta-Analysis of HF-HRV and RMSSD. Psychosomatic Medicine. Link: https://pubmed.ncbi.nlm.nih.gov/33065584/

Ying-Chih C et al. (2020) Heart rate variability in patients with somatic symptom disorders and functional somatic syndromes: A systematic review and meta-analysis. *Neuroscience and Biobehavioural Reviews* [Epub ahead of print]. Link: https://www.sciencedirect.com/science/article/abs/pii/S0149763419309868

4.4 Exercise physiology/testing

Bouquet J et al. (2019) Whole blood human transcriptome and virome analysis of ME/CFS patients experiencing post-exertional malaise following cardiopulmonary exercise testing. *PLoS One* 14 (3). Link: https://www.ncbi.nlm.nih.gov/pubmed/30897114

Brand R, et al. (2017) Activity patterns in response to symptoms in patients being treated for chronic fatigue syndrome: An experience sampling methodology study. *Health Psychology* 36 (3): 264-269. Link: https://www.ncbi.nlm.nih.gov/pubmed/27819461

Davenport T et al. (2020) Properties of measurements obtained during cardiopulmonary exercise testing in individuals with myalgic encephalomyelitis/chronic fatigue syndrome. *Work* [Epub ahead of print]. Link: https://content.iospress.com/articles/work/wor203170

Franklin JD, et al. (2018) Peak Oxygen Uptake in Chronic Fatigue Syndrome/ Myalgic Encephalomyelitis: A Meta-Analysis. *International Journal of Sports* Medicine [Epub ahead of print]. Link: https://www.ncbi.nlm.nih.gov/pubmed/30557887

Lien K et al. (2019) Abnormal blood lactate accumulation during repeated exercise testing in myalgic encephalomyelitis/chronic fatigue syndrome. *Physiological Reports* 7 (11). Link: https://physoc.onlinelibrary.wiley.com/doi/10.14814/phys.14138

https://physoc.onlinelibrary.wiley.com/doi/10.14814/phy2.14138

Lindheimer J et al. (2020) An analysis of 2-day cardiopulmonary exercise testing to assess unexplained fatigue. *Physiological Reports* 8 (17). Link: https://physoc.onlinelibrary.wiley.com/doi/full/10.14814/phy2.14564

McManimen SL and Jason LA. (2017) Differences in ME and CFS Symptomology in Patients with Normal and Abnormal Exercise Test Results. *International Journal of Neurology and Nerotherapy 4* (1): 066. Link:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5510614/

Melamed K et al. (2019) Unexplained exertional intolerance associated with impaired systemic oxygen extraction. *European Journal of Applied Physiology* 119 (10): 2375-2389. Link: https://link.springer.com/article/10.1007%2Fs00421-019-04222-6

Nelson MJ et al. (2019) Diagnostic sensitivity of 2-day cardiopulmonary exercise testing in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. *Journal of Translational Medicine 17 (1)*: 80. Link: https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-019-1836-0

Polli A, et al. (2019) Relationship Between Exercise-induced Oxidative Stress Changes and Parasympathetic Activity in Chronic Fatigue Syndrome: An Observational Study and in Patients and Healthy Subjects. *Clinical Therapy* [Epub ahead of print] Link: https://www.ncbi.nlm.nih.gov/pubmed/30665828

Stevens S, et al. (2018) Cardiopulmonary Exercise Test Methodology for Assessing Exertion Intolerance in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. *Frontiers in Pediatrics* 6:242. Link: https://www.ncbi.nlm.nih.gov/pubmed/30234078

Van Campen CL et al. (2020) Heart Rate Thresholds to Limit Activity in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients (Pacing): Comparison of Heart Rate Formulae and Measurements of the Heart Rate at the Lactic Acidosis Threshold during Cardiopulmonary Exercise Testing. Advances in Physical Education 10 (2). Link: https://www.scirp.org/journal/paperinformation.aspx?paperid=100333

Van Campen et al. (2020) Two-Day Cardiopulmonary Exercise Testing in Females with a Severe Grade of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Comparison with Patients with Mild and Moderate Disease. *Healthcare* 8 (3): 192. Link: https://www.mdpi.com/2227-9032/8/3/192

VanNess JM, *et al.* (2003) Subclassifying Chronic Fatigue Syndrome through Exercise Testing. *Medicine & Science in Sports & Exercise* 35(6): 908-913. Link: https://www.ncbi.nlm.nih.gov/pubmed/12783037

4.5 Gastrointestinal and microbiome

Berstad A et al. (2020) From IBS to ME – The dysbiotic march hypothesis. *Medical Hypothesis* 140, 109648. Link:

https://www.sciencedirect.com/science/article/pii/S0306987720301559

Corbitt M, et al. (2018) A Systematic Review of Probiotic Interventions for Gastrointestinal Symptoms and Irritable Bowel Syndrome in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME). *Probiotics and Antimicrobial Proteins*. Link: https://www.ncbi.nlm.nih.gov/pubmed/29464501

Du Preez S, et al. (2018) A systematic review of enteric dysbiosis in chronic fatigue syndrome/myalgic encephalomyelitis. *Systematic Reviews* 7 (1): 241. Link: https://www.ncbi.nlm.nih.gov/pubmed/30572962

Giloteaux L, *et al.* (2016) Reduced diversity and altered composition of the gut microbiome in individuals with myalgic encephalomyelitis/chronic fatigue syndrome. *Microbiome* Jun 23; 4(1):30. doi: 10.1186/s40168-016-0171-4. Link: https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-016-0171-4

Kenyon J et al. (2019) A Retrospective Outcome Study of 42 Patients with Chronic Fatigue Syndrome, 30 of Whom had Irritable Bowel Syndrome. Half were treated with oral approaches, and half were treated with Faecal Microbiome Transplantation. *Human Microbiome Journal* 13. Link: https://tinyurl.com/y2caxzaf

Mandarano AH, et al. (2018) Eukaryotes in the gut microbiota in myalgic encephalomyelitis/chronic fatigue syndrome. *Peer Journal 6*: e4282. Link: https://www.ncbi.nlm.nih.gov/pubmed/29375937

Nagy-Szakal D, et al. (2017) Fecal metagenomic profiles in subgroups of patients with myalgic encephalomyelitis/chronic fatigue syndrome. *Microbiome* 5: 44. Link:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5405467/

Navaneetharaja N, et al. (2016) A role for the Intestinal Microbiota and Virome in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)? *Journal of Clinical Medicine* 5 (6), 55 doi: 10.3390/jcm5060055. Link: https://www.ncbi.nlm.nih.gov/pubmed/27275835

Newberry F, et al. (2018) Does the microbiome and virome contribute to myalgic encephalomyelitis/chronic fatigue syndrome? *Clinical Science* (London) 132 (5): 523-542 Link: https://www.ncbi.nlm.nih.gov/pubmed/29523751

Proal AD and Marshall T (2018) Myalgic Encephalomyelitis/Chronic Fatigue Syndrome in the era of the human microbiome: persistent pathogens drive chronic symptoms by interfering with host metabolism, gene expression and immunity, *Frontiers in Pediatrics* [Epub ahead of print]. Link: https://www.frontiersin.org/articles/10.3389/fped.2018.00373/abstract

Roman P, et al. (2018) Are probiotic treatments useful on fibromyalgia syndrome or chronic fatigue syndrome patients? A systematic review. *Beneficial Microbes* 9 (4): 603-611. Link: https://www.ncbi.nlm.nih.gov/pubmed/29695180

Simeonova D, et al. (2018) Recognizing the leaky gut as a trans-diagnostic target for neuro-immune disorders using clinical chemistry and molecular immunology assays, *Current Topics in Medicinal Chemistry* [Epub ahead of print]. Link: https://tinyurl.com/yyc8ecag

Van Campen CM et al. (2020) Physical Activity Measures in Patients With Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Correlations Between Peak Oxygen Consumption, the Physical Functioning Scale of the SF-36 Questionnaire, and the Number of Steps From an Activity Meter. *Journal of Translational Medicine* 18 (1): 228. Link: https://tinyurl.com/ybywkd2h

Wallis A, et al. (2017) Examining clinical similarities between myalgic encephalomyelitis/chronic fatigue syndrome and d-lactic acidosis: a systematic review. *Journal of Translational Medicine* 15:129. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5463382/

Wallis, A, et al. (2018) Open-label pilot for treatment targeting gut dysbiosis in myalgic encephalomyelitis/chronic fatigue syndrome: neuropsychological symptoms and sex comparisons. *Journal of Translational Medicine* 16 (1): 24. Link: https://www.ncbi.nlm.nih.gov/pubmed/29409505 Also see corrected version: https://www.ncbi.nlm.nih.gov/pubmed/29475443

Wang T, et al. (2018) Chronic fatigue syndrome patients have alterations in their oral microbiome composition and function. *PLoS One* 13 (9). Link: https://www.ncbi.nlm.nih.gov/pubmed/30204780

4.6 Gene expression

Bouquet J et al. (2019) Whole blood human transcriptome and virome analysis of ME/CFS patients experiencing post-exertional malaise following cardiopulmonary exercise testing. *PLoS One* 14 (3). Link: https://www.ncbi.nlm.nih.gov/pubmed/30897114

Cameron B, et al. (2007) Gene Expression Correlates of Postinfective Fatigue Syndrome after Infectious Mononucleosis. *Journal of Infectious Diseases* 196(1): 56-66. Link: https://academic.oup.com/jid/article/196/1/56/843985

Dibble J et al. (2020) Genetic Risk Factors of ME/CFS: A Critical Review. *Human Molecular Genetics* [Epub ahead of print] Link: https://pubmed.ncbi.nlm.nih.gov/32744306/

de Vega WC, *et al.* (2014) DNA Methylation Modifications Associated with Chronic Fatigue Syndrome. *PLoS ONE* 9(8): e104757. Link: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0104757

The ME Association Index of Published ME/CFS Research

de Vega WC et al. (2018) Integration of DNA methylation & health scores identifies subtypes in myalgic encephalomyelitis/chronic fatigue syndrome. Epigenomics [Epub ahead of print].

Link: https://www.ncbi.nlm.nih.gov/pubmed/29692205

de Vega WC and McGowan PO. (2017) The epigenetic landscape of myalgic encephalomyelitis/chronic fatigue syndrome: deciphering complex phenotypes. *Epigenomics* 9 (11): 1337-1340. Link: https://www.ncbi.nlm.nih.gov/pubmed/29043854

Gow JW, et al. (2009) A gene signature for post-infectious chronic fatigue syndrome. BMC Medical Genomics 2: 38. Link: https://bmcmedgenomics.biomedcentral.com/articles/10.1186/1755-8794-2-38

Grabowska A et al. (2020) Review of the Quality Control Checks Performed by Current Genome-Wide and Targeted-Genome Association Studies on Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. *Frontiers in Pediatrics* 8: 293. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304330/

Gräns H, et al. (2005) Gene expression profiling in the chronic fatigue syndrome [Letter to the editor]. *Journal of Internal Medicine* 258(4): 388-390. Link: http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2796.2005.01548.x/full

Herrera S, et al. (2018) Genome-epigenome interactions associated with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. *Epigenetics* 5: 1-17. Link: https://www.ncbi.nlm.nih.gov/pubmed/30516085

Jacob E, et al. (2016) Gene expression factor analysis to differentiate pathways linked to fibromyalgia, chronic fatigue syndrome, and depression in a diverse patient sample. *Arthritis Care Research* 68 (1): 132 – 140. Link: https://www.ncbi.nlm.nih.gov/pubmed/26097208

Kerr JR, et al. (2008a) Seven genomic subtypes of chronic fatigue syndrome/myalgic encephalomyelitis: a detailed analysis of gene networks and clinical phenotypes. *Journal of Clinical Pathology* 61(6): 730-739. Link: https://www.ncbi.nlm.nih.gov/pubmed/18057078

Kerr JR, et al. (2008b) Gene Expression Subtypes in Patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis. *Journal of Infectious Diseases* 197(8): 1171-1184. Link: https://www.ncbi.nlm.nih.gov/pubmed/18462164

Kerr JR. (2019) Epstein-Barr virus induced gene-2 upregulation identifies a particular subtype of Chronic Fatigue Syndrome / Myalgic Encephalomyelitis. *Frontiers in Pediatrics* [Epub ahead of print]. Link: https://www.frontiersin.org/articles/10.3389/fped.2019.00059/full

Light AR, et al. (2012) Gene expression alterations at baseline and following moderate exercise in patients with Chronic Fatigue Syndrome and Fibromyalgia Syndrome. *Journal of Internal Medicine* 271(1): 64-81. Link: https://www.ncbi.nlm.nih.gov/pubmed/21615807

Narita M, et al. (2003) Association between serotonin transporter gene polymorphism and chronic fatigue syndrome. Biochemical and Biophysical Research Communications 311(2): 264-266. Link: https://www.ncbi.nlm.nih.gov/pubmed/14592408

Piraino B, et al. (2012) Genetic associations of fatigue and other symptom domains of the acute sickness response to infection. *Brain, Behavior, and Immunity* 26(4): 552-558. Link: https://www.ncbi.nlm.nih.gov/pubmed/22227623

Polli A et al. (2020) DNA Methylation and BDNF Expression Account for Symptoms and Widespread Hyperalgesia in Patients With Chronic Fatigue Syndrome and Fibromyalgia. *Arthritis Rheumatology* [Epub ahead of print]. Link: https://pubmed.ncbi.nlm.nih.gov/32562379/

Raijmakers RPH et al. (2019) A possible role for mitochondrial-derived peptides humanin and MOTS-c in patients with Q fever fatigue syndrome and chronic fatigue syndrome. *Journal of Translational Medicine* 17 (1): 157. Link: https://www.ncbi.nlm.nih.gov/pubmed/31088495

Shimosako N and Kerr JR. (2014) Use of single-nucleotide polymorphisms (SNPs) to distinguish gene expression subtypes of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). *Journal of Clinical Pathology* 67(12): 1078-1083. Link: https://www.ncbi.nlm.nih.gov/pubmed/25240059

Shoeman EM, *et al*. (2017) Clinically proven mDNA mutations are not common in those with chronic fatigue syndrome. *BMC Medical Genetics 18 (1)*: 29. Link: https://www.ncbi.nlm.nih.gov/pubmed/28302057

Smith AK, *et al.* (2011) Convergent Genomic Studies Identify Association of GRIK2 and NPAS2 with Chronic Fatigue Syndrome. *Neuropsychobiology* 64(4): 183-194. Link: https://www.ncbi.nlm.nih.gov/pubmed/21912186

Steiner S et al. (2020) Autoimmunity-Related Risk Variants in PTPN22 and CTLA4 Are Associated With ME/CFS With Infectious Onset. *Frontiers in Immunology* 11: 578. Link: https://www.frontiersin.org/articles/10.3389/fimmu.2020.00578/full

Trivedi M, et al. (2018) Identification of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome-associated DNA methylation patterns. *PLoS One 13 (7)*: e0201066. Link: https://www.ncbi.nlm.nih.gov/pubmed/30036399

Vernon SD, *et al.* (2002) Utility of the Blood for Gene Expression Profiling and Biomarker Discovery in Chronic Fatigue Syndrome. *Disease Markers* 18(4): 193-199. Link: https://www.ncbi.nlm.nih.gov/pubmed/12590173

Whistler T, et al. (2003) Integration of gene expression, clinical, and epidemiologic data to characterize Chronic Fatigue Syndrome. *Journal of Translational Medicine* 1: 10. Link: https://translational-medicine.biomedcentral.com/articles/10.1186/1479-5876-1-10

Whistler T, et al. (2006) Gene expression correlates of unexplained fatigue. *Pharmacogenomics* 7(3): 395-405. Link: https://tinyurl.com/y47fmvrf

White AT, et al. (2012) Differences in Metabolite-Detecting, Adrenergic, and Immune Gene Expression After Moderate Exercise in Patients with Chronic Fatigue Syndrome, Patients with Multiple Sclerosis, and Healthy Controls. Psychosomatic Medicine 74(1): 46-54. Link: https://www.ncbi.nlm.nih.gov/pubmed/22210239

Williams MV et al. (2019) Epstein-Barr Virus dUTPase Induces Neuroinflammatory Mediators: Implications for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. *Clinical Therapeutics* 41 (5): 848;863. Link: https://www.ncbi.nlm.nih.gov/pubmed/31040055

Yang CA, *et al.* (2018) The expression signature of very long non-coding RNA in myalgic encephalomyelitis/chronic fatigue syndrome. *Journal of Translational Medicine* 16 (1): 231. Link: https://www.ncbi.nlm.nih.gov/pubmed/30119681

4.6.1 Epigenetics

Almenar-Perez, *et al.* (2019) miRNA profiling of circulating EVs in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). *Journal of Extracellular Vesicles*, 7: 139. Link: https://tinyurl.com/y4b8durc

Almenar-Perez E et al. (2019) Epigenetic Components of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Uncover Potential Transposable Element Activation. Clinical Therapeutics 41 (4): 675-698. Link: https://www.clinicaltherapeutics.com/article/S0149-2918(19)30072-4/abstract

Almenar-Perez E et al. (2020) Assessing diagnostic value of microRNAs from peripheral blood mononuclear cells and extracellular vesicles in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. *Scientific Reports* 10 (1): 2064. Link:

https://www.ncbi.nlm.nih.gov/pubmed/32034172

Cheema AK et al. (2020) Unravelling myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): Gender-specific changes in the microRNA expression profiling in ME/CFS. *Journal of Cellular and Molecular Medicine* [Epub ahead of print]. Link: https://onlinelibrary.wiley.com/doi/10.1111/jcmm.15260#.XpbcH96IXqs

4.7 General reviews

Anderson G and Maes M (2020) Mitochondria and Immunity in Chronic Fatigue Syndrome. *Progress in Neuropsychopharmacological and Biological Psychiatry* [Epub ahead of print]. Link: https://tinyurl.com/yco9sufa

Bjørklund G et al. (2020) Environmental, Neuro-immune, and Neuro-oxidative Stress Interactions in Chronic Fatigue Syndrome. *Molecular Neurobiology* 57 (11): 4598-4607. Link: https://link.springer.com/article/10.1007/s12035-020-01939-w#citeas

Burke M (2019) "It's All in Your Head"—Medicine's Silent Epidemic. JAMA Network [Epub ahead of print]. Link: https://jamanetwork.com/journals/jamaneurology/article-abstract/2751253

Do-Young Kim et al. (2020) Systematic review of randomized controlled trials for chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) *Journal of Translational Medicine* 18: 7. Link: https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-019-02196-9

Friedberg F (2020) Legitimizing myalgic encephalomyelitis/chronic fatigue syndrome: indications of change over a decade. Fatigue: Biomedicine, Health and Behaviour [Epub ahead of print]. Link: https://www.tandfonline.com/doi/abs/10.1080/21641846.2020.1718292

Friedman K et al. (2019) Editorial: Advances in ME/CFS Research and Clinical Care. *Frontiers in Pediatrics* [Epub ahead of print]. Link: https://www.frontiersin.org/articles/10.3389/fped.2019.00370/full

Holgate ST, et al. (2011) Chronic fatigue syndrome: understanding a complex illness. *Nature Reviews Neuroscience* 12(9): 539-544. Link: https://www.ncbi.nlm.nih.gov/pubmed/21792218

Komaroff A (2019) Advances in Understanding the Pathophysiology of Chronic Fatigue Syndrome. *JAMA* [Epub ahead of print]. Link: https://jamanetwork.com/journals/jama/fullarticle/2737854

Larrimore C et al. (2019) Understanding Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and the Emerging Osteopathic Approach: A Narrative Review. *Journal of American Osteopathic Association* 119 (7): 446-455. Link: https://www.ncbi.nlm.nih.gov/pubmed/31233110

Lubet S and Tuller D (2020) The Concept of 'Illness Without Disease' Impedes Understanding of Chronic Fatigue Syndrome: A Response to Sharpe and Greco. *Medical Humanities* [Epub ahead of print]. Link: https://tinyurl.com/ybl998as

Maxmen A. (2017) Biological underpinnings of chronic fatigue syndrome begin to emerge. *Nature* 543 (7647): 602. Link: https://www.ncbi.nlm.nih.gov/pubmed/28358099

Maxmen A. (2018) A reboot for chronic fatigue syndrome research. *Nature* 553 (7686): 14-17. Link: https://www.nature.com/articles/d41586-017-08965-0

Missailidis D et al. (2019) Pathological Mechanisms Underlying Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. *Diagnostics* 9 (3): 80. Link: https://www.ncbi.nlm.nih.gov/pubmed/31330791

Morris G. et al. (2019) Myalgic encephalomyelitis or chronic fatigue syndrome: how could the illness develop? *Metabolic Brain Disease* 1-31. Link: https://link.springer.com/article/10.1007/s11011-019-0388-6

Nacul L et al. (2020) How Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Progresses: The Natural History of ME/CFS. *Frontiers in Neurology* [Epub ahead of print]. Link:

https://www.frontiersin.org/articles/10.3389/fneur.2020.00826/full

Pederson M (2019) Chronic Fatigue Syndrome and chronic pain conditions - vitally protective systems gone wrong. *Scandinavian Journal of Pain* [Epub ahead of print]. Link: https://www.ncbi.nlm.nih.gov/pubmed/31256069

Rivera C et al. (2019) Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Comprehensive Review. *Diagnostics* 9 (3). Link: https://www.ncbi.nlm.nih.gov/pubmed/31394725

Sandler CX and Lloyd AR (2020) Chronic fatigue syndrome: progress and possibilities. *The Medical Journal of Australia* [Epub ahead of print]. Link: https://www.ncbi.nlm.nih.gov/pubmed/32248536

Saunders R. (2018) Chronic fatigue syndrome therapies grounded in science hold promise. *Correspondence Nature* 555(7696):311 Link: https://www.nature.com/articles/d41586-018-03055-1

Sharpe M, et al. (2018) Don't reject evidence from CFS therapies. *Nature* 554 (7690): 31. Link: https://www.nature.com/articles/d41586-018-01285-x Correspondence to "A Reboot for Chronic Fatigue Syndrome Research"

Son C (2019) Minireview for Chronic Fatigue Syndrome and its Medical Attention recently. *Journal of Korean Medicine* 40 (4): 84-90. Link: https://www.jkom.org/upload/jkm-40-4-84.pdf

Sweetman E et al. (2019) Current Research Provides Insight into the Biological Basis and Diagnostic Potential for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). *Diagnostics* 9 (3). Link:

https://www.ncbi.nlm.nih.gov/pubmed/31295930

Theoharides T (2019) A Timely Multidisciplinary Update on Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. *Clinical Therapeutics* 41 (4): 610-611. Link: https://www.ncbi.nlm.nih.gov/pubmed/30940402

Watanabe Y and Kuratsune H. (2018) History of Researches on ME/CFS. *Brain and Nerves* 70 (1): 5-9. Link: https://www.ncbi.nlm.nih.gov/pubmed/29348369 (Article in Japanese)

Zielinski M et al. (2019) Fatigue, Sleep, and Autoimmune and Related Disorders. Frontiers of Immunology 10: 1827. Link: https://www.frontiersin.org/articles/10.3389/fimmu.2019.01827/full

4.8 Genetic predisposition

Albright F, et al. (2011) Evidence for a heritable predisposition to Chronic Fatigue Syndrome. *BMC Neurology* 11: 62. Link: https://www.ncbi.nlm.nih.gov/pubmed/21619629

Buchwald D, et al. (2001) A Twin Study of Chronic Fatigue. *Psychosomatic Medicine* 101 (2): 103-113 Link: https://www.ncbi.nlm.nih.gov/pubmed/11719632

Crawley E and Davey Smith G. (2007) Is chronic fatigue syndrome (CFS/ME) heritable in children, and if so, why does it matter? Archives of Disease in Childhood 92 (12): 1058-1061. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2066085/

Perez M et al. (2019) Genetic Predisposition for Immune System, Hormone, and Metabolic Dysfunction in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Pilot Study. *Frontiers in Pediatrics* 7: 206. Link: https://www.frontiersin.org/articles/10.3389/fped.2019.00206/full

4.9 Immunology

Abou-Donia M et al. (2020) Using Plasma Autoantibodies of Central Nervous System Proteins to Distinguish Veterans with Gulf War Illness from Healthy and Symptomatic Controls. *Brain Sciences* 10 (9). Link: https://www.mdpi.com/2076-3425/10/9/610/html

Balinas C, et al. (2017) Investigation of mast cell toll-like receptor 3 in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis and Systemic Mastocytosis participants using the novel application of autoMACS magnetic separation and flow cytometry. Asian Pacific Journal of allergy and Immunology. Link: https://www.ncbi.nlm.nih.gov/pubmed/29223146

Balinas C et al. (2019) Transient receptor potential melastatin 2 channels are overexpressed in myalgic encephalomyelitis/chronic fatigue syndrome patients. *Journal of Translational Medicine* 17 (401). Link: https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-019-02155-4#citeas

Bansal RA *et al.* (2020) The presence of overlapping quality of life symptoms in primary antibody deficiency (PAD) and chronic fatigue syndrome (CFS). *Allergy, Asthma & Clinical Immunology* 16 (21). Link: https://link.springer.com/article/10.1186/s13223-020-0417-3

Bates DW et al. (1995) Clinical laboratory test findings in patients with chronic fatigue syndrome. Archives of Internal Medicine 155(1): 97-103. Link: https://www.ncbi.nlm.nih.gov/pubmed/7632202

Bested AC, *et al*. (2001) Chronic fatigue syndrome: neurological findings may be related to blood-brain barrier permeability. *Medical Hypotheses* 57(2): 231-237. Link: https://www.ncbi.nlm.nih.gov/pubmed/11461179

Blomberg J et al. (2019) Antibodies to Human Herpesviruses in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients. *Frontiers in Immunology* 10: 1946. Link: https://www.frontiersin.org/articles/10.3389/fimmu.2019.01946/full

Bradley AS, et al. (2013) Altered functional B cell subset populations in patients with chronic fatigue syndrome compared to healthy controls. *Clinical & Experimental Immunology* 172(1): 73-80. Link: https://www.ncbi.nlm.nih.gov/pubmed/23480187

Brenu EW, *et al*. (2012a) Cytotoxic lymphocyte microRNAs as prospective biomarkers for chronic fatigue syndrome/ myalgic encephalomyelitis. *Journal of Affective Disorders* 141(2): 261-269. Link: https://www.ncbi.nlm.nih.gov/pubmed/22572093

Brenu EW, *et al*. (2012c) Longitudinal investigation of natural killer cells and cytokines in chronic fatigue syndrome/ myalgic encephalomyelitis. *Journal of Translational Medicine* 10: 88. Link:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3464733/

Brenu EW, *et al*. (2014a) Role of adaptive and innate immune cells in chronic fatigue syndrome/myalgic encephalomyelitis. *International Immunology* 26(4): 233-242. Link: https://www.ncbi.nlm.nih.gov/pubmed/24343819

Brenu EW, et al. (2014b) Methylation profile of CD4+ T cells in chronic fatigue syndrome/myalgic encephalomyelitis. *Journal of Clinical & Cellular Immunology* 5(3): 228. Link: https://tinyurl.com/yy5bowq6

Broadbent S and Coutts R. (2017) Intermittent and graded exercise effects on NK cell degranulation markers LAMP-1/LAMP-2 and CD8+CD38+ in chronic fatigue syndrome/myalgic encephalomyelitis. *Physiological Reports* 5 (5): e13091. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5350160/

Broderick G, et al. (2012) Cytokine expression profiles of immune imbalance in post-mononucleosis chronic fatigue. *Journal of Translational Medicine* 3(6): 544-551. Link: https://www.ncbi.nlm.nih.gov/pubmed/22973830

Bynke A et al. (2020) Autoantibodies to Beta-Adrenergic and Muscarinic cholinergic receptors in Myalgic Encephalomyelitis (ME) patients – a validation study in plasma and cerebrospinal fluid from two Swedish cohorts. *Brain, Behavior & Immunity* [Epub ahead of print]. Link: https://www.sciencedirect.com/science/article/pii/S2666354620300727

Cabanas H et al. (2019) Validation of impaired Transient Receptor Potential Melastatin 3 ion channel activity in natural killer cells from Chronic Fatigue Syndrome/ Myalgic Encephalomyelitis patients. *Molecular Medicine* 25 (1): 14. Link: https://www.ncbi.nlm.nih.gov/pubmed/31014226

Cabanas H et al. (2019) Naltrexone Restores Impaired Transient Receptor Potential Melastatin 3 Ion Channel Function in Natural Killer Cells From Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients. *Frontiers in Immunology* [Epub ahead of print] Link: https://tinyurl.com/yy92pwks

Carlo-Stella N, et al. (2009) Molecular Study of Receptor for Advanced Glycation Endproduct Gene Promoter and Identification of Specific HLA Haplotypes Possibly Involved in Chronic Fatigue Syndrome. International Journal of Immunopathology and Pharmacology 22(3): 745-754. Link: https://www.ncbi.nlm.nih.gov/pubmed/19822091

Clark LV, et al. (2017) Cytokine responses to exercise and activity in patients with chronic fatigue syndrome: case-control study. Clinical Experimental Immunology 190 (3): 360-371. Link: https://www.ncbi.nlm.nih.gov/pubmed/28779554

Cliff J et al. (2019) Cellular Immune Function in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Frontiers in Immunology 10: 796. Link: https://www.frontiersin.org/articles/10.3389/fimmu.2019.00796/full

Corbitt M et al. (2019) A systematic review of cytokines in chronic fatigue syndrome/myalgic encephalomyelitis/systemic exertion intolerance disease (CFS/ME/SEID). BMC Neurology 19 (207). Link:

https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-019-1433-0

Eaton N, et al. (2018) Rituximab impedes natural killer cell function in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis patients: A pilot in vitro investigation. *BMC Pharmacology and Toxicology* 19 (1): 12. Link: https://www.ncbi.nlm.nih.gov/pubmed/29587879

Eaton-Fitch N et al. (2019) A systematic review of natural killer cells profile and cytotoxic function in myalgic encephalomyelitis/chronic fatigue syndrome. *Systematic Review* 8 (279). Link:

https://systematicreviewsjournal.biomedcentral.com/articles/10.1186/s13643-019-1202-6

Dibnah B et al. (2019) Investigating the role of TGF-B and fatigue in Chronic Fatigue Syndrome. Annals of the Rheumatic Diseases 78 (2). Link: https://ard.bmj.com/content/78/Suppl 2/1495.2.abstract

Espinosa P and Urra JM (2019) Decreased Expression of the CD57 Molecule in T Lymphocytes of Patients with Chronic Fatigue Syndrome. Molecular Neurobiology 56 (9): 6581-6585. Link: https://www.ncbi.nlm.nih.gov/pubmed/30895436

Fletcher MA, *et al*. (2009) Plasma cytokines in women with chronic fatigue syndrome. *Journal of Translational Medicine* 7:96. Link: https://www.ncbi.nlm.nih.gov/pubmed/19909538

Fletcher MA, *et al*. (2010) Biomarkers in chronic fatigue syndrome: evaluation of natural killer cell function and dipeptidyl peptidyl peptidase IV/CD26. *PloS ONE* 5(5): e10817. Link: https://www.ncbi.nlm.nih.gov/pubmed/20520837

Giannoccaro MP et al. (2019) Searching for Serum Antibodies to Neuronal Proteins in Patients With Myalgic Encephalopathy/Chronic Fatigue Syndrome. *Clinical Therapeutics* 41 (5): 836-847. Link: https://www.ncbi.nlm.nih.gov/pubmed/31053295

Giloteaux L et al. (2020) Cytokine profiling of extracellular vesicles isolated from plasma in myalgicencephalomyelitis/chronic fatigue syndrome: a pilot study. *Journal of Translational Medicine* Link: https://pubmed.ncbi.nlm.nih.gov/33046133/

Groven N et al. (2020) MCP-1 is Increased in Patients with CFS and FM, whilst several other immune markers are significantly lower than healthy controls. *Brain, Behaviour & Immunity- health* [Epub ahead of print]. Link: https://www.sciencedirect.com/science/article/pii/S2666354620300326#!

Gunther OP, *et al.* (2018) Immunosignature Analysis of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), Molecular Neurobiology 56 (6): 4249-4257. Link:

https://www.ncbi.nlm.nih.gov/pubmed/30298340

Halpin P, et al. (2017) Myalgic encephalomyelitis/chronic fatigue syndrome and gulf war illness patients exhibit increased humoral responses to the herpesviruses-encoded dUTPase: Implications in disease pathophysiology. Journal of Medical Virology 89 (9): 1636-1645. Link: https://www.ncbi.nlm.nih.gov/pubmed/28303641

Hartwig J et al. (2020) IgG stimulated β 2 adrenergic receptor activation is attenuated in patients with ME/CFS. *Brain, Behaviour and Immunity* [Epub ahead of print]. Link:

https://www.sciencedirect.com/science/article/pii/S2666354620300120

Hornig M, et al. (2015) Distinct plasma immune signatures in ME/CFS are present early in the course of illness. *Science Advances* 1(1): e1400121. Link: http://advances.sciencemag.org/content/1/1/e1400121

Hornig M, et al. (2016) Cytokines network analysis of cerebrospinal fluid in myalgic encephalomyelitis/ chronic fatigue syndrome. *Molecular Psychiatry* 21(2): 261:269. Link: https://www.nature.com/articles/mp201529

Hornig M, et al. (2017) Immune network analysis of cerebrospinal fluid in myalgic encephalomyelitis/chronic fatigue syndrome with atypical and classical presentations. *Translational Psychiatry* 7(4): e1080. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5416687/

Hornig M (2020) Can the light of immunometabolism cut through "brain fog"? Journal of Clinical Investigation [Epub ahead of print]. Link: https://www.ncbi.nlm.nih.gov/pubmed/32039912

Huth TK, et al. (2014) Characterization of natural killer cell phenotypes in chronic fatigue syndrome/myalgic encephalomyelitis. *Journal of Clinical & Cellular Immunology* 5: 223. Link: https://tinyurl.com/y5xt8qfm

Jonsjo MA et al. (2019) Patients with ME/CFS (Myalgic Encephalomyelitis/Chronic Fatigue Syndrome) and chronic pain report similar level of sickness behavior as individuals injected with bacterial endotoxin at peak inflammation. Health [Epub ahead of print]. Link: https://www.sciencedirect.com/science/article/pii/S2666354619300298

Jonsjo MA et al. (2020) The role of low-grade inflammation in ME/CFS (Myalgic Encephalomyelitis/Chronic Fatigue Syndrome) - associations with symptoms. *Psychoneuroendocrinology* 113. Link: https://www.sciencedirect.com/science/article/pii/S0306453019313198

Kennedy G, et al. (2004) Increased neutrophil apoptosis in chronic fatigue syndrome. *Journal of Clinical Pathology* 57(8): 891-893. Link: https://www.ncbi.nlm.nih.gov/pubmed/15280416

Kerr JR. (2019) Epstein-Barr virus induced gene-2 upregulation identifies a particular subtype of Chronic Fatigue Syndrome / Myalgic Encephalomyelitis. *Frontiers in Pediatrics* [Epub ahead of print]. Link: https://www.frontiersin.org/articles/10.3389/fped.2019.00059/full

Komaroff AL. (2017) Inflammation correlates with symptoms in chronic fatigue syndrome. *Proceedings of the National Academy of Science USA* 114 (34): 8914-8916. Link: https://www.ncbi.nlm.nih.gov/pubmed/28811366

Lande A et al. (2020) Human Leukocyte Antigen alleles associated with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). *Scientific Reports* 10: 5267. Link: https://www.nature.com/articles/s41598-020-62157-x

Lasselin J and Capuron L. (2014) Chronic Low-Grade Inflammation in Metabolic Disorders: Relevance for Behavioral Symptoms. *NeuroImmunoModulation* 21 (2-3): 95-101. Link: https://www.ncbi.nlm.nih.gov/pubmed/24557041

BA, *et al.* (2017) Activin B is a novel biomarker for chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) diagnosis: a cross sectional study. *Journal of Translational Medicine* 15: 60. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5353946/

Loebel M, et al. (2014) Deficient EBV-Specific B- and T-Cell Response in Patients with Chronic Fatigue Syndrome. *PLoS ONE* 9(1): e85387. Link: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0085387

Loebel M, et al. (2016) Antibodies to ß adrenergic and muscarinic cholinergic receptors in patients with Chronic Fatigue Syndrome. *Brain, Behavior, and Immunity* 52: 32-39. Link: https://www.ncbi.nlm.nih.gov/pubmed/26399744

Lorusso L, et al. (2009) Immunological aspects of chronic fatigue syndrome. Autoimmunity Reviews 8(4): 287-291. Link: https://www.ncbi.nlm.nih.gov/pubmed/18801465

Lunde S, et al. (2016) Serum BAFF and APRIL levels, Tlymphocyte subsets, and immunoglobulins after B-cell depletion using the monoclonal anti-CD20 antibody rituximab in myalgic encephalopathy/chronic fatigue syndrome. (2016) *PLoS ONE* 11(8): e0161226. Doi: 10.1371/journal.pone.0161226. Link: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0161226

Lyall M, et al. (2003) A systemic review and critical evaluation of the immunology of chronic fatigue syndrome. *Journal of Psychosomatic Research* 55(2): 79-90. Link: https://www.ncbi.nlm.nih.gov/pubmed/12932505

Mandarano AH et al. (2019) Myalgic encephalomyelitis/chronic fatigue syndrome patients exhibit altered T cell metabolism and cytokine associations. Journal of Clinical Investigation 130 (3): 1491-1505. Link: https://www.ici.org/articles/view/132185

Mensah FKF, *et al.* (2017) Chronic fatigue syndrome and the immune system: Where are we now? *Neurophysiology Clinic* 47 (2): 131-138. Link: https://www.ncbi.nlm.nih.gov/pubmed/28410877

Mensah FKF, *et al.* (2018) CD24 Expression and B Cell Maturation Shows a Novel Link With Energy Metabolism: Potential Implications for Patients With Myalgic Encephalomyelitis/Chronic Fatigue Syndrome, *Frontiers in Immunology*, 9. Link: https://www.frontiersin.org/articles/10.3389/fimmu.2018.02421/full

Milivojevic M et al. (2020) Plasma proteomic profiling suggests an association between antigen driven clonal B cell expansion and ME/CFS. *PLoS One* 15 (7). Link: https://pubmed.ncbi.nlm.nih.gov/32692761/

Montoya JG, et al. (2017) Cytokine signature associated with disease severity in chronic fatigue syndrome patients. *Proceedings of the National Academy of Science* 114 (34): E750-E7158. Link:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5576836/

Morris G, et al. (2017) Nitrosative Stress, Hypernitrosylation, and Autoimmune Responses to Nitrosylated Proteins: New Pathways in Neuroprogressive Disorders Including Depression and Chronic Fatigue Syndrome. Molecular Neurobiology 54 (6): 4271-4291. Link: https://www.ncbi.nlm.nih.gov/pubmed/27339878

Morris M et al. (2019) Leveraging Prior Knowledge of Endocrine Immune Regulation in the Therapeutically Relevant Phenotyping of Women With Chronic Fatigue Syndrome. Clinical Therapeutics 41 (4): 656-674. Link: https://www.ncbi.nlm.nih.gov/pubmed/30929860

Nguyen CB, *et al*. (2017) Whole blood gene expression in adolescent chronic fatigue syndrome: an exploratory cross-sectional study suggesting altered B cell differentiation and survival. *Journal Translational Medicine* 15:102. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5426002/

Nguyen T, et al. (2017) Novel characterisation of mast cell phenotypes from peripheral blood mononuclear cells in chronic fatigue syndrome/myalgic encephalomyelitis patients. *Asian Pacific Journal of Allergy and Immunology* 35 (2): 75-81. Link: https://www.ncbi.nlm.nih.gov/pubmed/27362406

Nijs J, et al. (2014) Altered immune response to exercise in patients with chronic fatigue syndrome/myalgic encephalomyelitis: a systematic literature review. *Exercise Immunology Review* 20: 94-116. Link: https://www.ncbi.nlm.nih.gov/pubmed/24974723

The ME Association Index of Published ME/CFS Research

Nishikai M. (2007) Antinuclear antibodies in patients with chronic fatigue syndrome. *Nihon rinsho; Japanese journal of clinical medicine* 65(6): 1067-1070. Link: https://www.ncbi.nlm.nih.gov/pubmed/17561698

Ovejero et al. (2020) Activation of Transposable Elements in Immune Cells of Fibromyalgia Patients. *International Journal of Molecular Sciences* 21 (4). Link: https://tinyurl.com/rw78hjw

Polli A, et al. (2018) Exercise-induce hyperalgesia, complement system and elastase activation in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome - a secondary analysis of experimental comparative studies, *Scandinavian Journal of Pain* 19 (1): 183-192. Link: https://www.ncbi.nlm.nih.gov/pubmed/30325737

Rajimakers RPH, *et al.* (2019) Cytokine profiles in patients with Q fever fatigue syndrome. *Journal of Infectious Medicine* [Epub ahead of print]. Link: https://tinyurl.com/y3ox44am

Rekeland IG et al. (2019) Rituximab Serum Concentrations and Anti-Rituximab Antibodies During B-Cell Depletion Therapy for Myalgic Encephalopathy/Chronic Fatigue Syndrome. *Clinical Therapeutics* 41 (5): 806-814. Link: https://www.ncbi.nlm.nih.gov/pubmed/30502905

Rivas JL, et al. (2018) Association of T and NK Cell Phenotype with the Diagnosis of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Link: https://www.frontiersin.org/articles/10.3389/fimmu.2018.01028/full

Roerink ME, et al. (2017) Cytokine signatures in chronic fatigue syndrome patients: a Case Control Study and the effect of anakinra treatment. Journal of Translational Medicine 15: 267. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5747240/

Roerink ME, et al. (2018) Pitfalls in cytokine measurements - Plasma TGF-β1 in chronic fatigue syndrome. *Netherlands Journal of Medicine 76 (7): 310-313*. Link: https://www.ncbi.nlm.nih.gov/pubmed/30220655

Rosenblum H, et al. (2011) The Common Immunogenic Etiology of Chronic Fatigue Syndrome: From Infections to Vaccines via Adjuvants to the ASIA Syndrome. *Infectious Disease Clinics of North America* 25(4): 851-863. Link: https://www.ncbi.nlm.nih.gov/pubmed/22054760

Russell L, et al. (2016) Illness progression in chronic fatigue syndrome: a shifting immune baseline. *BMC Immunology* 17(1): 1-11. Link: https://www.ncbi.nlm.nih.gov/pubmed/26965484

Russell A, et al. (2018) Persistent fatigue induced by interferon-alpha: a novel, inflammation-based, proxy model of chronic fatigue syndrome. Psychoneuroendocrinology [Epub ahead of print]. Link: https://www.sciencedirect.com/science/article/pii/S0306453018301963

Sepulveda N et al. (2019) Myalgic Encephalomyelitis/Chronic Fatigue Syndrome as a Hyper-Regulated Immune System Driven by an Interplay Between Regulatory T Cells and Chronic Human Herpesvirus Infections. *Frontiers in Immunology* 10:2684. Link:

https://www.frontiersin.org/articles/10.3389/fimmu.2019.02684/full

Sharma O. (1999) Fatigue and sarcoidosis. *European Respiratory Journal* 13(4): 713-714. Link: http://erj.ersjournals.com/content/13/4/713

Silvestre I et al. (2019) Mitochondrial alterations in NK lymphocytes from ME/CFS patients. The Journal of Immunology 202 (1): 126.39. Link: https://www.jimmunol.org/content/202/1 Supplement/126.39

Singh S, et al. (2018) Humoral Immunity Profiling of Subjects with Myalgic Encephalomyelitis Using a Random Peptide Microarray Differentiates Cases from Controls with High Specificity and Sensitivity. *Molecular Neurobiology* 55 (1): 633-641. Link: https://www.ncbi.nlm.nih.gov/pubmed/27981498

Sotzny F et al. (2018) Myalgic Encephalomyelitis/Chronic Fatigue Syndrome - Evidence for an autoimmune disease. Autoimmune Reviews [Epub ahead of print] Link: https://www.ncbi.nlm.nih.gov/pubmed/29635081

Straus SE, *et al.* (1988) Allergy and the chronic fatigue syndrome. *Journal of Allergy and Clinical Immunology* 81(5): 791-795. Link: http://www.jacionline.org/article/0091-6749(88)90933-5/fulltext

Strawbridge R et al. (2019) Inflammatory proteins are altered in chronic fatigue syndrome - a systematic review and meta-analysis. *Neuroscience and Biobehavioural Reviews* 107:69-83. Link:

https://www.ncbi.nlm.nih.gov/pubmed/31465778

Stringer EA, *et al*. (2013) Daily cytokines fluctuations, driven by leptin, are associated with fatigue severity in chronic fatigue syndrome: evidence of inflammatory pathology. *Journal of Translational Medicine* 11:93. Link: https://www.ncbi.nlm.nih.gov/pubmed/23570606

Sweetman E, et al. (2019) Changes in the transcriptome of circulating immune cells of a New Zealand cohort with myalgic encephalomyelitis/chronic fatigue syndrome. *International Journal of Immunopathology and Pharmacology*. Link: https://tinyurl.com/y27hllmv

Theorell J, et al. (2017) Unperturbed Cytotoxic Lymphocyte Phenotype and Function in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients. *Frontiers in Immunology* 8: 723. Link:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5483846/

Tolle M et al. (2020) Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Efficacy of Repeat Immunoadsorption. *Journal of Clinical Medicine* 9 (8). Link: https://www.mdpi.com/2077-0383/9/8/2443

Uhde M, et al. (2018) C-Reactive Protein Response in Patients with Post-Treatment Lyme Disease Symptoms versus those with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. *Clinical Infectious Diseases* 67 (18). Link: https://tinyurl.com/yxg3rrgx

VanElzakker MB, *et al.* (2018) Neuroinflammation and cytokines in myalgic encephalomyelitis/ chronic fatigue syndrome (ME/CFS): A critical review of research methods, *Frontiers in Neurology* 9:1033. Link: https://www.frontiersin.org/articles/10.3389/fneur.2018.01033/abstract

Vollmer-Conna U, et al. (2007) Postinfective Fatigue Syndrome Is Not Associated with Altered Cytokine Production. *Clinical Infectious Diseases* 45(6): 732-735. Link: https://www.ncbi.nlm.nih.gov/pubmed/17712757

Wang T, et al. (2017) A systematic review of the association between fatigue and genetic polymorphisms. *Brain Behaviour Immunology* doi: 10.1016/j.bbi.2017.01.007. Link: https://www.ncbi.nlm.nih.gov/pubmed/28089639

Wirth K and Scheibenbogen C (2020) A Unifying Hypothesis of the Pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): Recognitions from the finding of autoantibodies against B2-adrenergic receptors. Autoimmune Reviews 19 (6). Link: https://www.ncbi.nlm.nih.gov/pubmed/32247028

Wyller VB, et al. (2017) Transforming growth factor beta (TGF-β) in adolescent chronic fatigue syndrome. Journal of Translational Medicine 15: 245. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5716371/

Yamamura T, et al. (2018) Immunopathogenesis of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Brain and Nerves 70 (1): 35-40. Link: https://www.ncbi.nlm.nih.gov/pubmed/29348373

Yang T et al. (2019) The clinical value of cytokines in chronic fatigue syndrome. Journal of Translational Medicine 17 (1): 213. Link: https://www.ncbi.nlm.nih.gov/pubmed/31253154

4.10 Infection

Alharbi S (2020) Isolation of ultrasmall (filterable) bacteria from patients suffering from ME, and patients and staff of a paediatric hospital. *Saudi Journal of Biological Sciences* [Epub ahead of print]. Link:

https://www.sciencedirect.com/science/article/pii/S1319562X20300887

Angel TE, et al. (2012) Cerebrospinal Fluid Proteome of Patients with Acute Lyme Disease. Journal of Proteome Research 11(10): 4814-4822. Link: https://www.ncbi.nlm.nih.gov/pubmed/22900834

Asprusten T et al. (2019) EBV-requisitioning physicians' guess on fatigue state 6 months after acute EBV infection. *BMJ Paediatrics Open* 3 (1). Link: https://tinyurl.com/y39pwy8r

Ayres JG, et al. (1998) Post-infection fatigue syndrome following Q fever. QJM 91(2): 105-123. Link: https://www.ncbi.nlm.nih.gov/pubmed/9578893

Barah F, et al. (2014) Neurological aspects of human parvovirus B19 infection: a systematic review. *Reviews in Medical Virology* 24(3): 154-168. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4238837/

Baraniuk JN, et al. (1998) Rhinitis Symptoms in Chronic Fatigue Syndrome. Annals of Allergy, Asthma & Immunology 81 (4): 359-365. Link: https://www.ncbi.nlm.nih.gov/pubmed/9809501

Bruno RL, et al. (1995) Pathophysiology of a Central Cause of a Post-Polio Fatigue Syndrome. Annals of the New York Academy of Sciences 753: 257–275. Link: https://www.ncbi.nlm.nih.gov/pubmed/7611635

Buchwald D, et al. (1992) A Chronic Illness Characterized by Fatigue, Neurologic and Immunologic Disorders, and Active Human Herpesvirus Type 6 Infection. Annals of Internal Medicine 116(2): 103-113. Link: https://www.ncbi.nlm.nih.gov/pubmed/1309285

Burbelo PD, *et al*. (2012) No serological evidence for a role of HHV-6 infection in chronic fatigue syndrome. *American Journal of Translational Research* 4(4): 443-451. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3493030/

Cameron B, et al. (2006) Prolonged Illness after Infectious Mononucleosis Is Associated with Altered Immunity but Not with Increased Viral Load. *Journal of Infectious Diseases* 193(5): 664-671. Link: https://www.ncbi.nlm.nih.gov/pubmed/16453261

Cameron B, et al. (2007) Gene Expression Correlates of Postinfective Fatigue Syndrome after Infectious Mononucleosis. *Journal of Infectious Diseases* 196(1): 56-66. Link: https://academic.oup.com/jid/article/196/1/56/843985

Cameron B, et al. (2010) Serological and virological investigation of the role of the herpesviruses EBV, CMV, HHV-6 in post-infective fatigue syndrome. *Journal of Medical Virology* 82(10): 1684-1688. Link: https://www.ncbi.nlm.nih.gov/pubmed/20827765

Carod-Artal FJ. (2015) Post-Ebolavirus disease syndrome: what do we know? Expert Review of Anti-Infective Therapy 13(10): 1185-1187. Link: https://www.ncbi.nlm.nih.gov/pubmed/26293407

Chia JK (2005) The role of enterovirus in chronic fatigue syndrome. *Journal of Clinical Pathology* 58 (11): 1126-1132. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1770761/

Chia JK and Chia AY (2008) Chronic fatigue syndrome is associated with chronic enterovirus infection of the stomach. *Journal of Clinical Pathology* 61(1): 43-48. Link: https://www.ncbi.nlm.nih.gov/pubmed/17872383

Chia JK, et al. (2010) Acute enterovirus infection followed by myalgic encephalomyelitis/ chronic fatigue syndrome (ME/CFS) and viral persistence. *Journal of Clinical Pathology* 63(2): 165-168. Link: https://www.ncbi.nlm.nih.gov/pubmed/19828908

Coffin JM and Stoye JP. (2009) A New Virus for Old Diseases? Science 326(5952): 530. Link: http://science.sciencemag.org/content/326/5952/530

Gow JW, et al. (2001) Antiviral Pathway Activation in Patients with Chronic Fatigue Syndrome and Acute Infection. *Clinical Infectious Diseases* 33(12): 2080-2081. Link: https://academic.oup.com/cid/article/33/12/2080/366051

Hanevik K, *et al*. (2012) Immunophenotyping in post-giardiasis functional gastrointestinal disease and chronic fatigue syndrome. *BMJ Infectious Diseases* 12:258. Link: https://www.ncbi.nlm.nih.gov/pubmed/23061432

Hanevik K, *et al.* (2017) Giardia-specific cellular immune responses in post-giardiasis chronic fatigue syndrome. *BMC Immunology* doi: 10.1186/s12865-017-0190-3. Link: https://bmcimmunol.biomedcentral.com/articles/10.1186/s12865-017-0190-3

Hickie I, et al. (2006) Post-Infective and chronic fatigue syndromes precipitated by viral and non-viral pathogens: prospective cohort study. *British Medical Journal* 333: 575. Link: https://www.ncbi.nlm.nih.gov/pubmed/16950834

Holmes D. (2012) XMRV controversy laid to rest. The Lancet Infectious Diseases 12(11): 834. Link: http://www.thelancet.com/journals/laninf/article/PIIS1473-3099(12)70254-2/fulltext

Hunskar GS, *et al.* (2012) The impact of atopic disease on the risk of post-infectious fatigue and irritable bowel syndrome 3 years after Giardia infection. A historic cohort study. *Scandinavian Journal of Gastroenterology* 47(8-9): 956-961. Link: https://www.ncbi.nlm.nih.gov/pubmed/22746290

Islam M et al. (2020) Post-viral fatigue and COVID-19: lessons from past epidemics. *Fatigue: Biomedicine, Health and* Behaviour [Epub ahead of print]. Link: https://www.tandfonline.com/doi/full/10.1080/21641846.2020.1778227

Katz BZ, et al. (2009) Chronic fatigue syndrome after infectious mononucleosis in adolescents. *Pediatrics* 124(1): 189-193. Link: https://www.ncbi.nlm.nih.gov/pubmed/19564299

Katz BZ et al. (2019) A Validated Scale for Assessing the Severity of Acute Infectious Mononucleosis. *The Journal of Pediatrics* [Epub ahead of print]. Link: https://www.jpeds.com/article/S0022-3476(19)30123-4/fulltext

Kerr JR, et al. (1996) Follow-up study of clinical and immunological findings in patients presenting with acute parvovirus B19 infection. *Journal of General Virology* 82(12): 3011-3019. Link:

https://www.ncbi.nlm.nih.gov/pubmed/8825713

Kerr JR, et al. (2001) Circulating tumor necrosis factor- α and interferon- γ are detectable during acute and convalescent parvovirus B19 infection and are associated with prolonged and chronic fatigue. *Journal of General Virology* 82(12): 3011:3019. Link: https://www.ncbi.nlm.nih.gov/pubmed/11714978

Kerr JR, et al. (2003) Successful Intravenous Immunoglobulin Therapy in 3 Cases of Parvovirus B19-Associated Chronic Fatigue Syndrome. *Clinical Infectious Diseases* 36(9): e100-e106. Link:

https://www.ncbi.nlm.nih.gov/pubmed/12715326

Klebek L et al. (2019) Differentiating post-polio syndrome from myalgic encephalomyelitis and chronic fatigue syndrome. *Fatigue: Biomedicine, Health and Behaviour.* Link:

https://www.tandfonline.com/doi/abs/10.1080/21641846.2019.1687117

Komaroff AL and Cho TA. (2011) Role of infection and neurologic dysfunction in chronic fatigue syndrome. *Seminars in Neurology* 31(3): 325-337. Link: https://www.ncbi.nlm.nih.gov/pubmed/21964849

Kristiansen MS et al. (2019) Clinical symptoms and markers of disease mechanisms in adolescent chronic fatigue following Epstein-Barr virus infection: An exploratory cross-sectional study. *Brain, Behaviour and Immunity* [Epub ahead of print]. Link:

https://www.sciencedirect.com/science/article/pii/S0889159119301333

Lo SC, et al. (2010) Detection of MLV-related virus gene sequences in blood of patients with chronic fatigue syndrome and healthy blood donors. *Proceedings of the National Academy of Sciences* 107(36): 15874-15879. Article subsequently retracted: see Proceedings of the National Academy of Sciences, 2012 109(1): 346. Link: https://www.ncbi.nlm.nih.gov/pubmed/20798047

Loebel M, et al. (2017) Serological profiling of the EBV immune response in Chronic Fatigue Syndrome using a peptide microarray. *PLoS One* 12 (6): e0179124. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5467847/

Lombardi VC, *et al.* (2009) Detection of an Infectious Retrovirus, XMRV, in Blood Cells of Patients with Chronic Fatigue Syndrome. *Science* 326(5952): 585-589. Article subsequently retracted: see Science, Alberts B (2011) 334: 1636-1636. Link: https://www.ncbi.nlm.nih.gov/pubmed/19815723

Marmion BP, *et al*. (2009) Q fever: persistence of antigenic non-viable cell residues of Coxiella burnetii in the host-implications for post Q fever infection fatigue syndrome and other chronic sequelae. *QJM* 102 (10): 673-684. Link: https://www.ncbi.nlm.nih.gov/pubmed/19556396

Melenotte C, et al. (2019) Post-bacterial infection chronic fatigue syndrome is not a latent infection. *Medecine et Maladies Infectieuses* 49 (2): 140-149. Link: https://www.ncbi.nlm.nih.gov/pubmed/30722945

Mørch K, et al. (2013) Chronic fatigue syndrome 5 years after giardiasis: differential diagnoses, characteristics and natural courses. *BMC* Gastroenterology 13:28. Link:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3598369/

Naess H et al. (2010) Postinfectious and chronic fatigue syndromes: clinical experience from a tertiary-referral centre in Norway. *In Vivo* 24 (2): 185-188. Link: https://www.ncbi.nlm.nih.gov/pubmed/20363992

Naess H, et al. (2012) Chronic fatigue syndrome after Giardia enteritis: clinical characteristics, disability and long-term sickness absence. *BMC Gastroenterology* 12: 13. Link: https://www.ncbi.nlm.nih.gov/pubmed/22316329

Oakes B, et al. (2013) Human Endogenous Retrovirus- K18 Superantigen Expression and Human Herpesvirus-6 and Human Herpesvirus-7 Viral Loads in Chronic Fatigue Patients. *Clinical Infectious Diseases* 56(10): 1394-1400. Link: https://www.ncbi.nlm.nih.gov/pubmed/23408682

The ME Association Index of Published ME/CFS Research

Oldstone MBA (1989) Viruses Can Cause Disease in the Absence of Morphological Evidence of Cell Injury: Implication for Uncovering New Diseases in the Future. *Journal of Infectious Diseases* 159(3): 384-389. Link: https://www.ncbi.nlm.nih.gov/pubmed/2644376

Panelli S, et al. (2017) XMRV and Public Health: The Retroviral Genome Is Not a Suitable Template for Diagnostic PCR, and Its Association with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Appears Unreliable. *Frontiers in Public Health* 5: 108. Link:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5439170/

Pederson M et al. (2019) Fatigue in Epstein-Barr virus infected adolescents and healthy controls: A prospective multifactorial association study. *Journal of Psychosomatic Research* [Epub ahead of print]. Link: https://www.sciencedirect.com/science/article/pii/S0022399918309462

Rasa S, et al. (2018) Chronic viral infections in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), *Journal of Translational Medicine* 16 (1): 268. Link: https://www.ncbi.nlm.nih.gov/pubmed/30285773

Schreiner P et al. (2020) Human Herpesvirus-6 Reactivation, Mitochondrial Fragmentation, and the Coordination of Antiviral and Metabolic Phenotypes in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. ImmunoHorizons 4 (4): 201-215. Link: https://www.immunohorizons.org/content/4/4/201

Seet RCS, *et al*. (2007) Post-infectious fatigue syndrome in dengue infection. Journal of Clinical Virology, 38(1): 1-6/ Link: https://www.ncbi.nlm.nih.gov/pubmed/17137834

Shikova et al. (2020) Cytomegalovirus, Epstein-Barr Virus and Human Herpesvirus 6 Infections in Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. *Journal of Medical Virology* [Epub ahead of pint]. Link: https://www.ncbi.nlm.nih.gov/pubmed/32129496

Suhadolnik RJ, et al. (1997) Biochemical Evidence for a novel low molecular weight 2-5A-Dependent RNase L in Chronic Fatigue Syndrome. *Journal of Interferon & Cytokines Research* 17(7): 377: 385. Link: https://www.ncbi.nlm.nih.gov/pubmed/9243369

van Kuppeveld FJM and van der Meer JWM. (2012) XMRV and CFS - the sad end of a story. *The Lancet* 379(9814): e27-e28. Link: http://www.thelancet.com/journals/lancet/article/PIIS0140-6736(11)60899-4/fulltext

van Loenhout JAF, et al. (2012) Assessing the long-term health impact of Q-fever in the Netherlands: a prospective cohort study started in 2007 on the largest documented Q-fever outbreak to date. BMC Infectious Diseases 12: 280. Link: https://www.ncbi.nlm.nih.gov/pubmed/23110336

van Loenhout JAF, et al. (2014) Serious long-term health consequences of Q-fever and Legionnaires' disease. Journal of Infection 68(6): 527-533. Link: https://www.ncbi.nlm.nih.gov/pubmed/24468188

Vernon, SD et al. (2006) Preliminary evidence of mitochondrial dysfunction associated with post-infective fatigue after acute infection with Epstein Barr Virus. *BMC Infectious Diseases* 6:15. Link:

https://www.ncbi.nlm.nih.gov/pubmed/16448567

Waters FG et al. (2020) Myalgic Encephalomyelitis (ME) outbreaks can be modelled as an infectious disease: a mathematical reconsideration of the Royal Free Epidemic of 1955. *Fatigue: Biomedicine, Health and Behaviour* [Epub ahead of print]. Link:

https://www.tandfonline.com/doi/full/10.1080/21641846.2020.1793058

Wensaas KA, *et al.* (2012) Irritable bowel syndrome and chronic fatigue 3 years after acute giardiasis: historic cohort study. *Gut* 61(2): 214-219. Link: https://www.ncbi.nlm.nih.gov/pubmed/21911849

White PD, et al. (2004) The nosology of sub-acute and chronic fatigue syndromes that follow infectious mononucleosis. *Psychological Medicine* 34(3): 499: 507. Link: https://www.ncbi.nlm.nih.gov/pubmed/15259835

White PD, et al. (2007) What Causes Prolonged Fatigue after Infectious Mononucleosis-and Does It Tell Us Anything about Chronic Fatigue Syndrome? Journal of Infectious Diseases 196(1): 4-5. Link: https://www.ncbi.nlm.nih.gov/pubmed/17538875

Williams MV et al. (2019) Epstein-Barr Virus dUTPase Induces Neuroinflammatory Mediators: Implications for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. *Clinical Therapeutics* 41 (5): 848;863. Link: https://www.ncbi.nlm.nih.gov/pubmed/31040055

Yamato M and Kataoka Y. (2015) Fatigue sensation following peripheral viral infection is triggered by neuroinflammation: who will answer these questions? *Neural Regeneration Research* 10(2): 203-204. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4392663/

Zafrir Y, et al. (2012) Autoimmunity following Hepatitis B vaccine as part of the spectrum of 'Autoimmune (Auto-inflammatory) Syndrome induced by Adjuvants' (ASIA): analysis of 93 cases. *Lupus* 21(2): 146-152. Link: https://www.ncbi.nlm.nih.gov/pubmed/22235045

4.11 Ion channels

Cabanas H et al. (2019) Validation of impaired Transient Receptor Potential Melastatin 3 ion channel activity in natural killer cells from Chronic Fatigue Syndrome/ Myalgic Encephalomyelitis patients. *Molecular Medicine* 25 (1): 14. Link: https://www.ncbi.nlm.nih.gov/pubmed/31014226

Chaudhuri A, et al. (2000) The symptoms of chronic fatigue syndrome are related to abnormal ion channel function. *Medical Hypotheses* 54(1): 59-63. Link: https://www.ncbi.nlm.nih.gov/pubmed/10790725

Nguyen T, et al. (2016) Impaired calcium mobilization in natural killer cells from chronic fatigue syndrome/myalgic encephalomyelitis patients is associated with transient receptor potential melastatin 3 ion channels. *Clinical and Experimental Immunology* 187 (2): 284-293.

Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5217865/

4.12 Metabolomics

Bliksrud YT. (2017) Tenuous link between chronic fatigue syndrome and pyruvate dehydrogenase deficiency. *Tidsskr Nor Laegeforen* 137 (23-24). Link: https://www.ncbi.nlm.nih.gov/pubmed/29231630 (Article in Norwegian)

Fluge O, et al. (2016) Metabolic profiling indicates impaired pyruvate dehydrogenase function in myalgic encephalopathy/chronic fatigue syndrome. *Journal of Clinical Immunology Insight* doi: 10.1172/jci.insight.89376. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5161229/

Germain A, et al. (2018) Metabolic profiling of a myalgic encephalomyelitis/chronic fatigue syndrome discovery cohort reveals disturbances in fatty acid and lipid metabolism. *Molecular BioSystems* 13 (2): 371-379. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5365380/

Germain A, et al. (2018) Prospective Biomarkers from Plasma Metabolomics of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Implicate Redox Imbalance in Disease Symptomatology. *Metabolites* 8 (4). Link: https://www.ncbi.nlm.nih.gov/pubmed/30563204

Germain A et al. (2020) Comprehensive Circulatory Metabolomics in ME/CFS Reveals Disrupted Metabolism of Acyl Lipids and Steroids. *Metabolites* 10 (1): 34. Link: https://www.mdpi.com/2218-1989/10/1/34

The ME Association Index of Published ME/CFS Research

Huth TK et al. (2020) A systematic review of metabolomic dysregulation in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis/Systemic Exertion Intolerance Disease (CFS/ME/SEID). Journal of Translational Medicine 18: 198. Link: https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-020-02356-2

Kashi A et al. (2019) The IDO Metabolic Trap Hypothesis for the Etiology of ME/CFS. Diagnostics 9 (3): 82. Link: https://www.mdpi.com/2075-4418/9/3/82

Lemle MD. (2009) Hypothesis: Chronic fatigue syndrome is caused by dysregulation of hydrogen sulfide metabolism. Medical Hypotheses 72(1): 108-109. Link: https://www.ncbi.nlm.nih.gov/pubmed/18799269

Miller J et al. (2020) Metabolomics in Central Sensitivity Syndromes. Metabolites 10 (4): 164. Link: https://www.mdpi.com/2218-1989/10/4/164/htm

Nagy-Szaki D, et al. (2018) Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics. Scientific Reports 8 (1): 10056. Link: https://www.ncbi.nlm.nih.gov/pubmed/29968805

Naviaux RK, et al. (2016) Metabolic features of chronic fatigue syndrome. Proceedings of the National Academy of Sciences doi:10.1073/pnas.1607571113. Link: http://www.pnas.org/content/113/37/E5472.full

Shao C, et al. (2017) Detection of Urine Metabolites in a Rat Model of Chronic Fatigue Syndrome before and after Exercise. Biomedical Research International 2017: 8182020. Link: https://www.ncbi.nlm.nih.gov/pubmed/28421200

Tomas C et al. (2017) Cellular Bioeneraetics is Impaired in patients with Chronic Fatigue Syndrome. PLoS ONE 12(10). Link: https://doi.org/10.1371/journal.pone.0186802

Tomas C and Newton J. (2018) Metabolic abnormalities in chronic fatigue syndrome/myalgic encephalomyelitis: a mini review. Biochemical Society Transactions 46 (3): 547-553. Link:

https://www.ncbi.nlm.nih.gov/pubmed/29666214

Yamano E, et al. (2016) Index markers of chronic fatigue syndrome with dysfunction of TCA and urea cycles. Science Reports doi: 10.1038/srep34990. Link: https://www.nature.com/articles/srep34990

4.13 Miscellaneous

Bileviciute-Ljungar I and Friberg D (2020) Emotional Awareness Correlated With Number of Awakenings From Polysomnography in Patients With Myalgic Encephalomyelitis/Chronic Fatigue Syndrome—A Pilot Study. *Frontiers in Psychiatry* 11: 222. Link:

https://www.frontiersin.org/articles/10.3389/fpsyt.2020.00222/full

Hock A. (2020) A Proposal for Explaining Progression from Light/Moderate to Severe Chronic Fatigue. *ES Journal of Nutritional Health* 1 (2). Link: https://escientificlibrary.com/nutritional-health/Article/ESJNH-V1-1008.pdf

Khoo T, Proudman S and Limaye V (2019) Silicone breast implants and depression, fibromyalgia and chronic fatigue syndrome in a rheumatology clinic population. *Clinical Rheumatology* 38 (5): 1271-1276. Link: https://tinyurl.com/yxsla9t8

Lacerda EM, et al. (2019) Hope, disappointment, and perseverance: Reflections of people with Myalgic encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Multiple Sclerosis participating in biomedical research. A qualitative focus group study. *Health Expectations* 22 (3): 373-384. Link: https://www.ncbi.nlm.nih.gov/pubmed/30632248

Lechner J, et al. (2017) Impact of Rantes from jawbone on Chronic Fatigue Syndrome. *Journal of Biological Regulators and Homeostatic Agents* 31 (2): 321-327. Link: https://www.ncbi.nlm.nih.gov/pubmed/28685531

Lee JS et al. (2020) An Adrenalectomy Mouse Model Reflecting Clinical Features for Chronic Fatigue Syndrome. *Biomolecules* 10 (1). Link: https://www.ncbi.nlm.nih.gov/pubmed/31906307

Melvin A et al. (2019) Circulating levels of GDF15 in patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. *Journal of Translational Medicine* 17 (409). Link: https://www.repository.cam.ac.uk/handle/1810/299333

Park HY (2019) Multidimensional Comparison of Cancer-Related Fatigue and Chronic Fatigue Syndrome: The Role of Psychophysiological Markers. *Psychiatry Investigations* 16 (1): 71-79, Link: https://www.ncbi.nlm.nih.gov/pubmed/30605994

Pederson M (2019) Chronic Fatigue Syndrome and chronic pain conditions - vitally protective systems gone wrong. *Scandinavian Journal of Pain* [Epub ahead of print]. Link: https://www.ncbi.nlm.nih.gov/pubmed/31256069

Priou S et al. (2020) Clinical History Segment Extraction From Chronic Fatigue Syndrome Assessments to Model Disease Trajectories. *Studies in Health Technology and Information* 270: 98-102. Link: https://pubmed.ncbi.nlm.nih.gov/32570354/

Rowe PC, et al. (2018) Improvement of severe myalgic encephalomyelitis/chronic fatigue syndrome symptoms following surgical treatment of cervical spinal stenosis. *Journal of Translational Medicine* 16 (1): 21. Link: https://www.ncbi.nlm.nih.gov/pubmed/29391028

Saha AK, *et al.* (2018) Erythrocyte Deformability as a Potential Biomarker for Chronic Fatigue Syndrome, *Blood* 132: 4874. Link: https://tinyurl.com/yxkhdab2

Shoenfeld Y et al. (2020) Complex syndromes of chronic pain, fatigue and cognitive impairment linked to autoimmune dysautonomia and small fiber neuropathy. *Clinical Immunology* [Epub ahead of print]. Link: https://www.ncbi.nlm.nih.gov/pubmed/32171889

Thakur V et al. (2020) Protective Effect of Hemin Against Experimental Chronic Fatigue Syndrome in Mice: Possible Role of Neurotransmitters. *Neurotoxic Research* [Epub ahead of print]. Link: https://tinyurl.com/y8bloc4g

Tjell C, et al. (2018) Can a Chronic BPPV With a History of Trauma be the Trigger of Symptoms in Vestibular Migraine, Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), and Whiplash Associated Disorders (WAD)? A Retrospective Cohort Study, Otology and Neurotology 40 (1): 96-102. Link: https://www.ncbi.nlm.nih.gov/pubmed/30303941

Tsai SY, et al. (2018) Increased risk of chronic fatigue syndrome following burn injuries. *Journal of Translational Medicine* 16 (1): 342. Link: https://www.ncbi.nlm.nih.gov/pubmed/30518392

Tsai SY et al. (2019) Increased risk of chronic fatigue syndrome following psoriasis: a nationwide population-based cohort study. *Journal of Translational Medicine* 17 (1): 154. Link: https://www.ncbi.nlm.nih.gov/pubmed/31088562

Tuuminen T, et al. (2018) Dampness and mold hypersensitivity syndrome and vaccination as risk factors for chronic fatigue syndrome, Autoimmune Reviews 18 (1): 107-108 Link: https://www.ncbi.nlm.nih.gov/pubmed/30408578

Zhao H, et al. (2020) Oxidative stress caused by a dysregulated Wnt/beta-catenin signalling pathway is involved in abnormal placenta formation in pregnant mice with chronic fatigue syndrome. Zygote Link: https://pubmed.ncbi.nlm.nih.gov/33054899/

4.14 Mitochondria and energy production

Abdullah M, et al. (2012) Mitochondrial myopathy presenting as fibromyalgia: a case report. *Journal of Medical Case Reports* 6(1): 55. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3293012/

Behan WMH et al. (1991) Mitochondrial abnormalities in the post-viral fatigue syndrome. Acta Neuropathologica 83(1): 61-65. Link: https://www.ncbi.nlm.nih.gov/pubmed/1792865

Booth NE, *et al*. (2012) Mitochondrial dysfunction and the pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). *International Journal of Clinical and Experimental Medicine* 5(3): 208-220. Link: https://www.ncbi.nlm.nih.gov/pubmed/22837795

Bohne V and Bohne O (2019) Suggested Pathology of Systemic Exertion Intolerance Disease: Impairment of the E3 Subunit or Crossover of Swinging Arms of the E2 Subunit of the Pyruvate Dehydrogenase Complex Decreases Regeneration of Cofactor Dihydrolipoic Acid of the E2 Subunit. *Medical Hypothesis* [Epub ahead of print] Link: https://tinyurl.com/y6fbud4a

Brown AE, *et al*. (2015) Abnormalities of AMPK activation and glucose uptake in cultured skeletal muscle cells from individuals with chronic fatigue syndrome. *PloS ONE* 10(4): e0122982. Link:

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0122982

Brown AE et al. (2018) Pharmacological activation of AMPK and glucose uptake in cultured human skeletal muscle cells from patients with ME/CFS. Bioscience Reports [Epub ahead of print] Link: https://www.ncbi.nlm.nih.gov/pubmed/2965416

Ciregia F, et al. (2016) Bottom-up proteomics suggests an association between differential expression of mitochondrial proteins and chronic fatigue syndrome. *Translational Psychiatry* doi: 10.1038/to/2016.184. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5048217/

Holden S et al. (2020) A systematic review of mitochondrial abnormalities in myalgic encephalomyelitis/chronic fatigue syndrome/systemic exertion intolerance disease. *Journal of Translational Medicine* 18 (1): 290. Link: https://pubmed.ncbi.nlm.nih.gov/32727475/

Lawson N et al. (2016) Elevated energy production in chronic fatigue syndrome patients. *Journal of Nature and Science* 2 (10) e221. Link: https://www.ncbi.nlm.nih.gov/pubmed/27747291

Missailidis D et al. (2020) An Isolated Complex V Inefficiency and Dysregulated Mitochondrial Function in Immortalized Lymphocytes from ME/CFS Patients. International Journal of Molecular Science 21 (3) 1074. Link: https://www.mdpi.com/1422-0067/21/3/1074

Myhill S, et al. (2009) Chronic fatigue syndrome and mitochondrial dysfunction. International Journal of Clinical and Experimental Medicine 2: 1-16. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2680051/

Naviaux RK (2019) Perspective: Cell Danger Response Biology—The New Science that Connects Environmental Health with Mitochondria and the Rising Tide of Chronic Illness. *Mitochondrion* [Epub ahead of print]. Link: https://www.sciencedirect.com/science/article/pii/\$1567724919302922

Nguyen T, et al. (2018) Reduced glycolytic reserve in isolated natural killer cells from Myalgic encephalomyelitis/chronic fatigue syndrome patients: A preliminary investigation. Asian Pacific Journal of Allergy and Immunology [Epub ahead of print] Link: https://www.ncbi.nlm.nih.gov/pubmed/29981562

O'Conner K, et al. (2017) Energy envelope maintenance among patients with myalgic encephalomyelitis and chronic fatigue syndrome: Implications of limited energy reserves. *Chronic Illness* 15 (1): 51-60. Link: https://www.ncbi.nlm.nih.gov/pubmed/29231037

Ohba T et al. (2019) Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Induced by Repeated Forced Swimming in Mice. *Biological and Pharmaceutical Bulletin* 42 (7). Link: https://www.istage.jst.go.jp/article/bpb/42/7/42_b19-00009/_html/-char/en

Raijmakers RPH et al. (2019) A possible role for mitochondrial-derived peptides humanin and MOTS-c in patients with Q fever fatigue syndrome and chronic fatigue syndrome. *Journal of Translational Medicine* 17 (1): 157. <u>Link:</u> https://www.ncbi.nlm.nih.gov/pubmed/31088495

Schoeman EM, et al. (2017) Clinically proven mtDNA mutations are not common in those with chronic fatigue syndrome. *MBC Medical Genetics* 18: 29. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5356238/

Schreiner P et al. (2020) Human Herpesvirus-6 Reactivation, Mitochondrial Fragmentation, and the Coordination of Antiviral and Metabolic Phenotypes in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. *ImmunoHorizons* 4 (4): 201-215. Link: https://www.immunohorizons.org/content/4/4/201

Smits B, et al. (2011) Mitochondrial enzymes discriminate between mitochondrial disorders and chronic fatigue syndrome. *Mitochondrion* 11(5): 735-738. Link: https://www.ncbi.nlm.nih.gov/pubmed/21664495

Sweetman E et al. (2020) A SWATH-MS analysis of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome peripheral blood mononuclear cell proteomes reveals mitochondrial dysfunction. *Journal of Translational Medicine* 18 (365). Link: https://tinyurl.com/y7rw58vq

Tomas C and Elson JL (2019) The role of mitochondria in ME/CFS: a perspective. Fatigue: Biomedicine, Health & Behaviour. Link: https://www.tandfonline.com/doi/abs/10.1080/21641846.2019.1580855

Tomas C et al. (2019) Mitochondrial complex activity in permeabilised cells of chronic fatigue syndrome patients using two cell types. PeerJ 7: e6500. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6398432/

Tomas C et al. (2019) Assessing cellular energy dysfunction in CFS/ME using a commercially available laboratory test. *Scientific Reports* 9. Link: https://www.nature.com/articles/s41598-019-47966-z

Tomas C et al. (2020) The effect of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) severity on cellular bioenergetic function. *PLoS One* 15 (4). Link: https://www.ncbi.nlm.nih.gov/pubmed/32275686

Torrell H, et al. (2017) Mitochondrial dysfunction in a family with psychosis and chronic fatigue syndrome. *Mitochodrion* 34: 1-8. Link: https://www.ncbi.nlm.nih.gov/pubmed/27989882

Watson WS, *et al.* (1998) Increased Resting Energy Expenditure in the Chronic Fatigue Syndrome. *Journal of Chronic Fatigue Syndrome* 4(4): 3-14. Link: http://www.tandfonline.com/doi/abs/10.1300/J092v04n04 02

4.15 Muscle

Arnold DL, *et al*. (1984) Excessive intracellular acidosis of skeletal muscle on exercise in a patient with a post-viral exhaustion/fatigue syndrome. *The Lancet* 323(8391): 137-1369. Link:

http://www.sciencedirect.com/science/article/pii/S0140673684918713

He J, et al. (2013) Cerebral vascular control is associated with skeletal muscle pH in chronic fatigue syndrome patients both at rest and during dynamic stimulation. *NeuroImage: Clinical* 2: 168-173. Link: https://www.ncbi.nlm.nih.gov/pubmed/24179772

Jammes Y and Retornaz F (2019) Understanding neuromuscular disorders in chronic fatigue syndrome. F1000Research [Epub ahead of print]. Link: https://f1000research.com/articles/8-2020

Jammes Y et al. (2020) Altered muscle membrane potential and redox status differentiates two subgroups of patients with chronic fatigue syndrome. *Journal of Translational Medicine* 18 (1): 173. Link:

https://www.ncbi.nlm.nih.gov/pubmed/32306967

Jones DEJ et al. (2010) Abnormalities in pH handling by peripheral muscle and potential regulation by the autonomic nervous system in chronic fatigue syndrome. *Journal of Internal Medicine* 267(4): 394-401. Link: https://www.ncbi.nlm.nih.gov/pubmed/20433583

Jones DEJ et al. (2012) Loss of capacity to recover from acidosis on repeat exercise in chronic fatigue syndrome: case-control study. *European Journal of Clinical Investigation* 42(2): 186-194. Link:

https://www.ncbi.nlm.nih.gov/pubmed/21749371

Lane RJM, *et al.* (2003) Enterovirus related metabolic myopathy: a post-viral fatigue syndrome. *Journal of Neurology, Neurosurgery & Psychiatric* 74(10): 1382:1386. Link: https://www.ncbi.nlm.nih.gov/pubmed/14570830

McCully KK and Natelson BH (1999) Impaired oxygen delivery to muscle in chronic fatigue syndrome. Clinical Science 97(5): 603-608. Link: https://www.ncbi.nlm.nih.gov/pubmed/10545311

Paul L, et al. (1999) Demonstration of delayed recovery from fatiguing exercise in chronic fatigue syndrome. *European Journal of Neurology* 6(1): 63-69. Link: https://www.ncbi.nlm.nih.gov/pubmed/10209352

Pietrangelo T, et al. (2009) Functional Characterization of Muscle Fibers from Patients with Chronic Fatigue Syndrome: Case-Control Study. *International Journal of Immunopathology and Pharmacology* 22(2): 247-436. Link: https://www.ncbi.nlm.nih.gov/pubmed/19505395

Roca-Espiau M et al. (2019) Muscle-tendon weakness contributes to chronic fatigue syndrome in Gaucher's disease. *Journal of Orthopeadic Surgeon Research* 14 (1): 383. Link: https://www.ncbi.nlm.nih.gov/pubmed/31752949

Rutherford G, et al. (2016) Understanding muscle dysfunction in chronic fatigue syndrome. *Journal of Ageing Research* doi: 10.1155/2016/2497348. Link: https://www.hindawi.com/journals/jar/2016/2497348/

Tiziana P, et al. (2018) Old muscle in young body: an aphorism describing the Chronic Fatigue Syndrome, European Journal of Translational Myology 28 (3). Link: https://pagepressjournals.org/index.php/bam/article/view/7688/7470

Tomas C, et al (2020) Substrate utilisation of cultured skeletal muscle cells in patients with CFS. *Science Reports* Link: https://pubmed.ncbi.nlm.nih.gov/33106563/

Umay E et al. (2020) What happens to muscles in fibromyalgia syndrome. *International Journal of Medical Science* 189 (2): 749-756. Link: https://www.ncbi.nlm.nih.gov/pubmed/31773542

Wessely S and Powell R. (1989) Fatigue syndromes: a comparison of chronic "postviral" fatigue with neuromuscular and affective disorders. *Journal of Neurology, Neurosurgery & Psychiatry* 52(8): 940-948. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1031831/

4.16 Neurology: Autonomic nervous system (ANS) dysfunction

Allen J, et al. (2012) Chronic fatigue syndrome and impaired peripheral pulse characteristics on orthostasis – a new potential diagnostic biomarker. *Physiological Measurement* 33(2): 231-241. Link: https://www.ncbi.nlm.nih.gov/pubmed/22273713

Ballantine R, et al. (2019) Gravity-induced exercise intervention in an individual with chronic fatigue syndrome/myalgic encephalomyelitis and postural tachycardia syndrome: a case report. *International Journal of Therapy and Rehabilitation* 26 (5). Link:

https://www.magonlinelibrary.com/doi/abs/10.12968/ijtr.2016.0035

Benarroch EE. (2012) Postural Tachycardia Syndrome: A Heterogeneous and Multifactorial Disorder. Mayo Clinic Proceedings 87(12): 1214-1225. Link: http://www.mayoclinicproceedings.org/article/S0025-6196(12)00896-8/abstract

Cambras D., et al. (2018) Circadian rhythm abnormalities and autonomic dysfunction in patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis. *PLoS One 13 (6)*. Link: https://www.ncbi.nlm.nih.gov/pubmed/29874259

Clark JE et al. (2019) Network structure underpinning (dys)homeostasis in chronic fatigue syndrome; Preliminary findings. *PLoS One* 14 (3). Link: https://www.ncbi.nlm.nih.gov/pubmed/30908516

Cvejic E, et al. (2017) Autonomic nervous system function, activity patterns, and sleep after physical or cognitive challenge in people with chronic fatigue syndrome. *Journal of Psychosomatic Research* 103: 91-94. Link: https://www.ncbi.nlm.nih.gov/pubmed/29167053

Finkelmeyer A, et al. (2018) Intracranial compliance is associated with symptoms of orthostatic intolerance in chronic fatigue syndrome. *PLoS One 13* (7): e0200068. Link: https://www.ncbi.nlm.nih.gov/pubmed/29969498

Freeman R and Komaroff AL. (1997) Does the Chronic Fatigue Syndrome Involve the Autonomic Nervous System? The American Journal of Medicine 102(4): 357-364. Link: https://www.ncbi.nlm.nih.gov/pubmed/9217617

Freeman R. (2002) The chronic fatigue syndrome is a disease of the autonomic nervous system. Sometimes. *Clinical Autonomic Research* 12(4): 231-233. Link: https://www.ncbi.nlm.nih.gov/pubmed/12357274

Friedberg F (2019) Autonomic markers, chronic fatigue syndrome, and post-exertion states. *Journal of Psychosomatic Research* 127. Link: https://www.sciencedirect.com/science/article/abs/pii/S0022399919309055

Garner R and Baraniuk J (2019) Orthostatic intolerance in chronic fatigue syndrome. *Journal of Translational Medicine* 17: 185. Link: https://tinyurl.com/y4zptpiy

He J, et al. (2013) Cerebral vascular control is associated with skeletal muscle pH in chronic fatigue syndrome patients both at rest and during dynamic stimulation. *NeuroImage: Clinical* 2: 168-173. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3777833/

Hoad A, et al. (2008) Postural orthostatic tachycardia syndrome is an underrecognized condition in chronic fatigue syndrome. QJM 101(12): 961-965. Link: https://academic.oup.com/gimed/article/101/12/961/1564413

Kavi L, et al. (2016) A profile of patients with postural tachycardia syndrome and their experience of healthcare in the UK. *The British Journal of Cardiology* 23(1): 33. Link: https://bjcardio.co.uk/2016/03/a-profile-of-patients-with-postural-tachycardia-syndrome-and-their-experience-of-healthcare-in-the-uk/

Lee J et al. (2020) Clinically accessible tools for documenting the impact of orthostatic intolerance on symptoms and function in ME/CFS. Work [Epuab ahead of print]. Link: https://content.iospress.com/articles/work/wor203169

Li H, et al. (2014) Autoimmune Basis for Postural Tachycardia Syndrome. *Journal of the American Heart Association* 3: e000755. Link: http://jaha.ahajournals.org/content/3/1/e000755

Li D et al. (2020) Homeostatic disturbance of thermoregulatory functions in rats with chronic fatigue. *Neuroscience Research* [Epub ahead of print]. Link: https://www.sciencedirect.com/science/article/pii/S0168010220301577

Miwa K and Inoue Y. (2018) The etiologic relation between disequilibrium and orthostatic intolerance in patients with myalgic encephalomyelitis (chronic fatigue syndrome). *Journal of Cardiology* [Epub ahead of print] Link: https://www.ncbi.nlm.nih.gov/pubmed/29588088

The ME Association Index of Published ME/CFS Research

Miwa K (2019) Paradigme shift to disequilibrium in the genesis of orthostatic intolerance in patients with chronic fatigue syndrome. European Heart Journal 40 (1). Link: https://tinyurl.com/y4t3qsut

McDonald C, et al. (2014) Postural tachycardia syndrome is associated with significant symptoms and functional impairment predominantly affecting young women: a UK perspective. *BMJ Open* 4(6): e004127. Link: http://bmjopen.bmj.com/content/4/6/e004127

Newton JL, et al. (2007) Symptoms of autonomic dysfunction in chronic fatigue syndrome. QJM 100(8): 519-526. Link: https://www.ncbi.nlm.nih.gov/pubmed/17617647

Nijs J and Ickmans K. (2013) Postural orthostatic tachycardia syndrome as a clinically important subgroup of chronic fatigue syndrome: further evidence for central nervous system dysfunctioning. *Journal of Internal Medicine* 273(5): 498-500. Link: https://tinyurl.com/y2xx7ftg

Oosterwijck JV, *et al.* (2017) The Role of Autonomic Function in Exercise-induced Endogenous Analgesia: A Case-control Study in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Healthy People. *Pain Physicians* 20(3): E389-E399. Link: https://www.ncbi.nlm.nih.gov/pubmed/28339438

Orjatsalo M, et al. (2017) Autonomic Nervous System Functioning Related to Nocturnal Sleep in Patients with Chronic Fatigue Syndrome Compared to Tired Controls. *Journal of Clinical Sleep Medicine*. Link: https://www.ncbi.nlm.nih.gov/pubmed/29246267

Słomko J et al. (2020) Autonomic Phenotypes in Chronic Fatigue Syndrome (CFS) Are Associated with Illness Severity: A Cluster Analysis. *Journal of Clinical Medicine* 9 (8). Link: https://www.mdpi.com/2077-0383/9/8/2531

Strassheim V, et al. (2018) Managing fatigue in postural tachycardia syndrome (PoTS): The Newcastle approach. Autonomic Neuroscience 215: 56-61. Link: https://www.autonomicneuroscience.com/article/S1566-0702(17)30328-4/abstract

Van Cauwenbergh D, *et al.* (2014) Malfunctioning of the autonomic nervous system in patients with chronic fatigue syndrome: a systematic literature review. *European Journal of Clinical Investigation* 44(5): 516-526. Link: https://www.ncbi.nlm.nih.gov/pubmed/24601948

4.17 Neurology: Central nervous system and neuroimaging

Albrecht DS, *et al.* (2018) Brain glial activation in fibromyalgia- A multi-site positron emission tomography investigation. *Brain, Behaviour and Immunity* [Epub ahead of print] Link:

https://www.sciencedirect.com/science/article/pii/S0889159118302423

Almutairi B et al. (2020) Using structural and functional MRI as a neuroimaging technique to investigate chronic fatigue syndrome/myalgic encephalopathy: a systematic review. *BMJ Open* 10 (8). Link: https://pubmed.ncbi.nlm.nih.gov/32868345/

Baraniuk JN and Shivapurka N. (2017) Exercise-induced changes in cerebrospinal fluid miRNAs in Gulf War Illness, Chronic Fatigue Syndrome and sedentary control subjects. *Scientific Reports* 7: 15338. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5681566/

Barnden LR et al. (2019) Intra brainstem connectivity is impaired in chronic fatigue syndrome. *Neuroimage: Clinical* 24. Link: https://tinyurl.com/y24xs8nk

Barnden LR, *et al.* (2018) Hyperintense sensorimotor T1 spin echo MRI is associated with brainstem abnormality in chronic fatigue syndrome. *NeuroImage: Clinical 20; 102-109.* Link: https://www.sciencedirect.com/science/article/pii/S2213158218302237

Barnden LR, *et al.* (2015) Evidence in chronic fatigue syndrome for severity-dependent upregulation of prefrontal myelination that is independent of anxiety and depression. *NMR in Biomedicine* 28(3): 404-413. Link: http://onlinelibrary.wiley.com/doi/10.1002/nbm.3261/abstract

Boissoneault J, et al. (2018) Static and dynamic functional connectivity in patients with chronic fatigue syndrome: use of arterial spin labelling fMRI. Clinical Physiology and Functional Imaging 38 (10): 128-137. Link: https://www.ncbi.nlm.nih.gov/pubmed/27678090

Bragee B et al. (2020) Signs of Intracranial Hypertension, Hypermobility, and Craniocervical Obstructions in Patients With Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. *Frontiers in Neurology* 11. Link: https://www.frontiersin.org/articles/10.3389/fneur.2020.00828/full

Brooks J, et al. (2000) Proton magnetic resonance spectroscopy and morphometry of the hippocampus in chronic fatigue syndrome. *The British Journal of Radiology* 73(875): 1206-1208. Link: https://www.ncbi.nlm.nih.gov/pubmed/11144799

The ME Association Index of Published ME/CFS Research

Buchwald D, et al. (1992) A Chronic Illness Characterized by Fatigue, Neurologic and Immunologic Disorders, and Active Human Herpesvirus Type 6 Infection. Annals of Internal Medicine 116(2): 103-113. Link: https://www.ncbi.nlm.nih.gov/pubmed/1309285

Chaudhuri A and Behan PO. (2000) Fatigue and basal ganglia. *Journal of the Neurological Sciences* 179(1–2): 34-42. Link: https://www.ncbi.nlm.nih.gov/pubmed/11054483

Chaudhuri A, et al. (2003) Proton magnetic resonance spectroscopy of basal ganglia in chronic fatigue syndrome. *NeuroReport* 14(2): 225-228. Link: https://www.ncbi.nlm.nih.gov/pubmed/12598734

Chaudhuri A and Behan PO. (2004) Fatigue in neurological disorders. *The Lancet* 363(9413): 978-988. Link: https://www.ncbi.nlm.nih.gov/pubmed/15043967

Costa DC, et al. (1995) Brainstem perfusion is impaired in chronic fatigue syndrome. QJM 88(11): 767-773. Link: https://www.ncbi.nlm.nih.gov/pubmed/8542261

de Lange FP, *et al*. (2004) Neural correlates of the chronic fatigue syndrome—an fMRI study. *Brain* 127(9): 1948-1957. Link: https://www.ncbi.nlm.nih.gov/pubmed/15240435

de Lange FP, *et al.* (2005) Gray matter volume reduction in the chronic fatigue syndrome. *Neurolmage* 26(3): 777-781. Link: https://www.ncbi.nlm.nih.gov/pubmed/15955487

Ferrero K, et al. (2017) CNS findings in chronic fatigue syndrome and a neuropathological case report. *Journal of Investigative Medicine* 64 (6): 974-983. Link: https://www.ncbi.nlm.nih.gov/pubmed/28386034

Filho AJ et al. (2019) Shared microglial mechanisms underpinning depression and chronic fatigue syndrome and their comorbidities. *Behaviour and Brain Research* [Epub ahead of print] Link: https://www.ncbi.nlm.nih.gov/pubmed/31136774

Finkelmeyer A, et al. (2017) Grey and white matter differences in Chronic Fatigue Syndrome – A voxel-based morphometry study. *Neuroimage Clinical* 17: 24-30. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5633338/

Fujii H et al. (2020) Altered Structural Brain Networks Related to Adrenergic/Muscarinic Receptor Autoantibodies in Chronic Fatigue Syndrome. Journal of Neuroimaging [Epub ahead of print]. Link: https://pubmed.ncbi.nlm.nih.gov/32609410/

He Q et al. (2020) Neuroinflammation, Oxidative Stress, and Neurogenesis in a Mouse Model of Chronic Fatigue Syndrome, and the Treatment with Kampo Medicine. *Biological and Pharmaceutical Bulletin* 43 (1): 110-115. Link: https://www.ncbi.nlm.nih.gov/pubmed/31902915

Higgins N, et al. (2014) What do lumbar puncture and jugular venoplasty say about a connection between chronic fatigue syndrome and idiopathic intracranial hypertension? *EJMINT*: 1448000223 Link: http://www.ejmint.org/original-article/1443000223

Hulens M, et al. (2018) The link between idiopathic intracranial hypertension, fibromyalgia, and chronic fatigue syndrome: exploration of a shared pathophysiology. *Journal of Pain Research* 11: 3129-3140. Link: https://www.ncbi.nlm.nih.gov/pubmed/30573989

Ichise M, et al. (1992) Assessment of regional cerebral perfusion by 99Tcm-HMPAO SPECT in chronic fatigue syndrome. *Nuclear Medicine Communications* 13(10): 767-772. Link: https://www.ncbi.nlm.nih.gov/pubmed/1491843

Keenan PA. (1999) Brain MRI abnormalities exist in chronic fatigue syndrome. Journal of the Neurological Sciences 171(1): 1-2. Link: https://www.ncbi.nlm.nih.gov/pubmed/10567041

Kimura Y, et al. (2018) Brain abnormalities in myalgic encephalomyelitis/chronic fatigue syndrome: Evaluation by diffusional kurtosis imaging and neurite orientation dispersion and density imaging, *Journal of Magnetic Resonance Imaging* [Epub ahead of print]. Link: https://www.ncbi.nlm.nih.gov/pubmed/30430664

Komaroff AL, et al. (2018) Neurologic Abnormalities in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Review. *Brain and Nerve* 70 (1): 41-54. Link: https://www.ncbi.nlm.nih.gov/pubmed/29348374 (Article in Japanese)

Kuratsune H, et al. (2002) Brain Regions Involved in Fatigue Sensation: Reduced Acetylcarnitine Uptake into the Brain. *Neurolmage* 17(3): 1256-1265. Link: https://www.ncbi.nlm.nih.gov/pubmed/12414265

Lange G, et al. (1999) Brain MRI abnormalities exist in a subset of patients with chronic fatigue syndrome. *Journal of the Neurological Sciences* 171(1): 3-7. Commentary on page 1-2. Link:

https://www.ncbi.nlm.nih.gov/pubmed/10567042

Lange G, et al. (2001) Quantitative Assessment of Cerebral Ventricular Volumes in Chronic Fatigue Syndrome. *Applied Neuropsychology* 8(1): 23-30. Link: https://www.ncbi.nlm.nih.gov/pubmed/11388120

Lange G, et al. (2005) Objective evidence of cognitive complaints in Chronic Fatigue Syndrome: A BOLD fMRI study of verbal working memory. *NeuroImage* 26(2): 513-524. Link: https://www.ncbi.nlm.nih.gov/pubmed/15907308

Mackay A (2019) A neuro-inflammatory model can explain the onset, symptoms and flare-ups of myalgic encephalomyelitis/chronic fatigue syndrome. *Journal of Primary Health Care* 11 (4): 300-307. Link: http://www.publish.csiro.au/HC/fulltext/HC19041

Maksound R (2020) A systematic review of neurological impairments in myalgic encephalomyelitis/ chronic fatigue syndrome using neuroimaging techniques. *PLoS One* 15 (4). Link: https://www.ncbi.nlm.nih.gov/pubmed/32353033

Martinez ARM, et al. (2012) Sensory Neuronopathy and Autoimmune Diseases. Autoimmune Diseases. Link: https://www.hindawi.com/journals/ad/2012/873587/

Mathew SJ, et al. (2009) Ventricular cerebrospinal fluid lactate is increased in chronic fatigue syndrome compared with generalized anxiety disorder: an in vivo 3.0 T 1H MRS imaging study. *NMR in Biomedicine* 22(3): 251-258. Link: https://www.ncbi.nlm.nih.gov/pubmed/18942064

McCrae CS, *et al*. (2015) Fibromyalgia patients have reduced hippocampal volume compared with healthy controls. *Journal of Pain Research* 8: 47-52. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4321661/

Miller AH, et al. (2014) Decreased Basal Ganglia Activation in Subjects with Chronic Fatigue Syndrome: Association with Symptoms of Fatigue. *PLoS ONE* 9(5): e98156. Link: https://www.ncbi.nlm.nih.gov/pubmed/24858857

Morris G, et al. (2017) A Comparison of Neuroimaging Abnormalities in Multiple Sclerosis, Major Depression and Chronic Fatigue Syndrome (Myalgic Encephalomyelitis): is there a common cause? Molecular Neurobiology. Link: https://www.ncbi.nlm.nih.gov/pubmed/28516431

Morriss RK, et al. (2002) Neuropsychological performance and noradrenaline function in chronic fatigue syndrome under conditions of high arousal. Psychopharmacology 163(2): 166-173. Link: https://www.ncbi.nlm.nih.gov/pubmed/12202963

Mueller C, et al. (2019) Evidence of widespread metabolite abnormalities in Myalgic encephalomyelitis/chronic fatigue syndrome: assessment with whole-brain magnetic resonance spectroscopy. *Brain Imaging and Behaviour* [Epub ahead of print]. Link: https://www.ncbi.nlm.nih.gov/pubmed/30617782

Murrough JW, *et al.* (2010) Increased ventricular lactate in chronic fatigue syndrome measured by 1H MRS imaging at 3.0 T. II: comparison with major depressive disorder. *NMR Biomed* 23 (6): 643-650. Link: https://www.ncbi.nlm.nih.gov/pubmed/20661876

Nakatomi Y, et al. (2014) Neuroinflammation in Patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis: An 11C-(R)-PK11195 PET Study. *Journal of Nuclear Medicine* 55(6): 945-950. Link: https://www.ncbi.nlm.nih.gov/pubmed/24665088

Nakatomi Y, et al. (2018) Neuroinflammation in the Brain of Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. *Brain and Nerves* 70 (1): 19-25. Link: https://www.ncbi.nlm.nih.gov/pubmed/29348371 (Article in Japanese)

Natelson BH, et al. (2005) Spinal Fluid Abnormalities in Patients with Chronic Fatigue Syndrome. *Clinical and Vaccine Immunology* 12(1): 52-55. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC540195/

Natelson BH, et al. (2017) Multimodal and simultaneous assessments of brain and spinal fluid abnormalities in chronic fatigue syndrome and the effects of psychiatric comorbidity. *Journal of Neurological Science* 375: 411-416. Link: https://www.ncbi.nlm.nih.gov/pubmed/28320179

Natelson BH, et al. (2017) Elevations of Ventricular Lactate Levels Occur in Both Chronic Fatigue Syndrome and Fibromyalgia. *Fatigue* 5 (1): 15-20. Link: https://www.ncbi.nlm.nih.gov/pubmed/29308330

Noda M, et al. (2018) Glial Activation and Expression of the Serotonin Transporter in Chronic Fatigue Syndrome, *Frontiers in Psychiatry* 9. Link: https://www.frontiersin.org/articles/10.3389/fpsyt.2018.00589/full

O'Callaghan JP and Miller DB (2019) Neuroinflammation disorders exacerbated by environmental stressors. *Metabolism Clinical and Experimental* 100: 153951. Link: https://www.metabolismjournal.com/article/S0026-0495(19)30148-9/fulltext

Okada T, et al. (2004) Mechanisms underlying fatigue: a voxel-based morphometric study of chronic fatigue syndrome. *BMC Neurology* 4: 14 Link: https://www.ncbi.nlm.nih.gov/pubmed/15461817

Provenzano D et al. (2020) A Machine Learning Approach to the Differentiation of Functional Magnetic Resonance Imaging Data of Chronic Fatigue Syndrome (CFS) From a Sedentary Control. *Frontiers in Computer Neuroscience* 14: 2. Link: https://www.frontiersin.org/articles/10.3389/fncom.2020.00002/full

Provenzano D et al. (2020) Machine Learning Detects Pattern of Differences in Functional Magnetic Resonance Imaging (fMRI) Data between Chronic Fatigue Syndrome (CFS) and Gulf War Illness (GWI). *Brain Sciences* 10 (7). Link: https://www.mdpi.com/2076-3425/10/7/456/htm

Puri BK, et al. (2002) Relative increase in choline in the occipital cortex in chronic fatigue syndrome. Acta Psychiatrica Scandinavica 106(3): 224-226. Link: https://www.ncbi.nlm.nih.gov/pubmed/12197861

Puri BK, et al. (2012) Regional grey and white matter volumetric changes in myalgic encephalomyelitis (chronic fatigue syndrome): a voxel-based morphometry 3 T MRI study. *The British Journal of Radiology* 85(1015): e270-e273. Link: https://www.ncbi.nlm.nih.gov/pubmed/22128128

Schutzer SE, *et al.* (2011) Distinct Cerebrospinal Fluid Proteomes Differentiate Post-Treatment Lyme Disease from Chronic Fatigue Syndrome. *PLoS ONE* 6(2): e17287. Link:

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0017287

Schwartz RB, *et al.* (1994) SPECT imaging of the brain: comparison of findings in patients with chronic fatigue syndrome, AIDS dementia complex, and major unipolar depression. *American Journal of Roentgenology* 162(4). Link: https://www.ncbi.nlm.nih.gov/pubmed/8141022

Sebaiti M et al. (2019) Macrophagic myofasciitis-associated dysfunctioning: An update of neuropsychological and neuroimaging features. Best Practise and Research Clinical Rheumatology [Epub ahead of print]. Link: https://tinyurl.com/y2q8uh3i

Sevel LS, *et al*. (2018) Structural brain changes versus self-report: machine-learning classification of chronic fatigue syndrome patients. Experimental Brain Research [Epub ahead of print] Link: https://www.ncbi.nlm.nih.gov/pubmed/29846797

Shan ZY, *et al* (2016) Progressive brain changes in patients with chronic fatigue syndrome: A longitudinal MRI study. *Journal of Magnetic Resonance Imaging* doi: 10.1002/jmri.25283. Link: https://www.ncbi.nlm.nih.gov/pubmed/27123773

Shan ZY, *et al.* (2018) Decreased Connectivity and Increased Blood Oxygenation Level Dependent Complexity in the Default Mode Network in Individuals with Chronic Fatigue Syndrome. *Brain Connectivity*. Link: https://www.ncbi.nlm.nih.gov/pubmed/29152994

Shan Z et al. (2020) Neuroimaging characteristics of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): a systematic review. *Journal of Translational Medicine* 18 (1): 335. Link: https://pubmed.ncbi.nlm.nih.gov/32873297/

Shungu DC, *et al.* (2012) Increased ventricular lactate in chronic fatigue syndrome. III. Relationships to cortical glutathione and clinical symptoms implicate oxidative stress in disorder pathophysiology. *NMR in Biomedicine* 25(9): 1073-1087. Link: https://www.ncbi.nlm.nih.gov/pubmed/22281935

Staud R, et al. (2018) Task Related Cerebral Blood Flow Changes of Patients with Chronic Fatigue Syndrome: An Arterial Spin Labeling Study, *Fatigue* 6 (2): 63-79. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5914525/

Thapaliya K et al. (2020) Mapping of pathological change in chronic fatigue syndrome using the ratio of T1- and T2-weighted MRI scans. *NeuroImage* Clinical 28. Link:

https://www.sciencedirect.com/science/article/pii/S2213158220302035

Tirelli U, et al. (1998) Brain positron emission tomography (PET) in chronic fatigue syndrome: preliminary data. *The American Journal of Medicine* 105(3): 54S-58S. Link: https://www.ncbi.nlm.nih.gov/pubmed/9790483

VanElzakker MB, *et al.* (2018) Neuroinflammation and cytokines in myalgic encephalomyelitis/ chronic fatigue syndrome (ME/CFS): A critical review of research methods, *Frontiers in Neurology* [Epub ahead of print]. Link: https://www.frontiersin.org/articles/10.3389/fneur.2018.01033/abstract

Vuong Q et al. (2019) Brain Responses in CFS and TMD to Autonomic Challenges: An Exploratory fMRI Study. *JDR Clinical and Translational Research* [Epub ahead of print]. Link:

https://journals.sagepub.com/doi/abs/10.1177/2380084419872135

Wantanabe Y (2018) Brain Science on Myalgic Encephalomyelitis/Chronic Fatigue Syndrome, *Brain and Nerves* 70 (11): 1193-1201. Link: https://www.ncbi.nlm.nih.gov/pubmed/30416112

Wortinger LA, et al. (2017) Altered right anterior insular connectivity and loss of associated functions in adolescent chronic fatigue syndrome. *PLoS One* 12 (9): e0184325. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5589232/

Washington S et al. (2020) Exercise alters brain activation in Gulf War Illness and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. *Brain Communications* 2 (2). Link: https://academic.oup.com/braincomms/article/2/2/fcaa070/5885074

Wostyn P and De Deyn P. (2018) The putative glymphatic signature of chronic fatigue syndrome: A new view on the disease pathogenesis and therapy. *Medical Hypotheses 118: 142-145.* Link:

https://www.ncbi.nlm.nih.gov/pubmed/30037603

The ME Association Index of Published ME/CFS Research

Yasui M et al. (2019) Hyperactivation of proprioceptors induces microglia-mediated long-lasting pain in a rat model of chronic fatigue syndrome. *Journal of Neuroinflammation* 16: 67. Link:

https://jneuroinflammation.biomedcentral.com/articles/10.1186/s12974-019-1456-x

Yoshiuchi K, et al. (2006) Patients with chronic fatigue syndrome have reduced absolute cortical blood flow. *Clinical Physiology and Functional Imaging* 26(2): 83-86. Link: https://www.ncbi.nlm.nih.gov/pubmed/16494597

Zeineh MM, et al. (2015) Right Arcuate Fasciculus Abnormality in Chronic Fatigue Syndrome. *Radiology* 274(2): 517-526. Link: http://pubs.rsna.org/doi/abs/10.1148/radiol.14141079

Zinn ML, *et al.* (2016) Intrinsic Functional Hypoconnectivity in Core Neurocognitive Networks Suggests Central Nervous System Pathology in Patients with Myalgic Encephalomyelitis: A Pilot Study. *Appl Psychophysiol Biofeedback* 41: 283. Link: https://www.ncbi.nlm.nih.gov/pubmed/26869373

Zinn MA, *et al.* (2018) Cortical Hypoactivation During Resting EEG Suggests Central Nervous System Pathology in Patients with Chronic Fatigue Syndrome. *Biological Psychology* [Epub ahead of print]. Link: https://www.ncbi.nlm.nih.gov/pubmed/29802861

4.18 Neurology: Hypothalamic and neuroendocrine function

Altemus M, et al. (2001) Abnormalities in response to vasopressin infusion in chronic fatigue syndrome. *Psychoneuroendocrinology* 26(2): 175-188. Link: https://www.ncbi.nlm.nih.gov/pubmed/11087963

Bakheit AM, *et al*. (1992) Possible upregulation of hypothalamic 5-hydroxytryptamine receptors in patients with postviral fatigue syndrome. *BMJ* 304(6833): 1010-1012. Link: https://www.ncbi.nlm.nih.gov/pubmed/1586780

Bakheit AM, et al. (1993) Abnormal arginine-vasopressin secretion and water metabolism in patients with postviral fatigue syndrome. Acta Neurologica Scandinavica 87(3): 234-238. Link: https://www.ncbi.nlm.nih.gov/pubmed/8475696

Chaudhuri A, et al. (2011) Chronic Fatigue Syndrome: A Disorder of Central Cholinergic Transmission. *Journal of Chronic Fatigue Syndrome* 3(1): 3-16. Link: http://www.tandfonline.com/doi/abs/10.1300/J092v03n01_02

The ME Association Index of Published ME/CFS Research

Demitrack MA, et al. (1991) Evidence for impaired activation of the hypothalamic-pituitary-adrenal axis in patients with chronic fatigue syndrome. The Journal of Clinical Endocrinology & Metabolism 73(6): 1224-1234. Link: https://www.ncbi.nlm.nih.gov/pubmed/1659582

Hatziagelaki E, et al. (2018) Myalgic Encephalomyelitis/Chronic Fatigue Syndrome-Metabolic Disease or Disturbed Homeostasis due to Focal Inflammation in the Hypothalamus? *Journal of Pharmacology and Experimental Therapeutics* 367 (1): 155-167. Link:

https://www.ncbi.nlm.nih.gov/pubmed/30076265

Herane-Vives A et al. (2020) Cortisol Levels in Chronic Fatigue Syndrome and Atypical Depression Measured Using Hair and Saliva Specimens. *Journal of Affective Disorders* 267: 307-314. Link:

https://www.sciencedirect.com/science/article/abs/pii/S0165032719314466

Mackay A and Tate WP (2018) A compromised paraventriculr nucleus within a dysfunctional hypothalamus: A novel neuroinflammatory paradigm for ME/CFS. International Journal of Immunopathology and Pharmacology. Link: https://journals.sagepub.com/doi/10.1177/2058738418812342#articleCitationDownloadContainer

Miwa K. (2017) Down-regulation of renin-aldosterone and antidiuretic hormone systems in patients with myalgic encephalomyelitis/chronic fatigue syndrome. Journal of Cardiology 69 (4): 684-688. Link: https://www.ncbi.nlm.nih.gov/pubmed/27401397

Morris M et al. (2019) Leveraging Prior Knowledge of Endocrine Immune Regulation in the Therapeutically Relevant Phenotyping of Women With Chronic Fatigue Syndrome. Clinical Therapeutics 41 (4): 656-674. Link: https://www.ncbi.nlm.nih.gov/pubmed/30929860

Nater UM, *et al*. (2008) Alterations in Diurnal Salivary Cortisol Rhythm in a Population-Based Sample of Cases with Chronic Fatigue Syndrome. *Psychosomatic Medicine* 70(3): 298-305. Link: https://www.ncbi.nlm.nih.gov/pubmed/18378875

Papadopoulos AS and Cleare AJ. (2012) Hypothalamic-pituitary-adrenal axis dysfunction in chronic fatigue syndrome. *Nature Reviews Endocrinology* 8(1): 22-32. Link: https://www.ncbi.nlm.nih.gov/pubmed/21946893

Papanicolaou DA, *et al.* (2004) Neuroendocrine Aspects of Chronic Fatigue Syndrome. *NeuroImmunoModulation* 11(2): 65-74. Link: https://www.ncbi.nlm.nih.gov/pubmed/14758052

Pednekar DD et al. (2020) A System Theoretic Investigation of Cortisol Dysregulation in Fibromyalgia Patients with Chronic Fatigue. 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Link:

https://ieeexplore.ieee.org/document/8857427/citations#citations

Pednekar DD et al. (2020) Characterization of Cortisol Dysregulation in Fibromyalgia and Chronic Fatigue Syndromes: A State-Space Approach. *IEEE* [Epub ahead of print]. Link: https://ieeexplore.ieee.org/document/9025248

Roerink ME, *et al.* (2018) Hair and salivary cortisol in a cohort of women with chronic fatigue syndrome. Hormones and Behaviour [Epub ahead of Print]. Link: https://www.ncbi.nlm.nih.gov/pubmed/29807037

Ruiz-Núñez B, et al. (2018) Higher Prevalence of "Low T3 Syndrome" in Patients with Chronic Fatigue Syndrome: A Case–Control Study. *Frontiers in Endocrinology*. Link:

https://www.frontiersin.org/articles/10.3389/fendo.2018.00097/full

Scott LV, *et al.* (1999) Small adrenal glands in chronic fatigue syndrome: a preliminary computer tomography study. *Psychoneuroendocrinology* 24(7): 759-768. Link: https://www.ncbi.nlm.nih.gov/pubmed/10451910

Tak LM, et al. (2011) Meta-analysis and meta-regression of hypothalamic-pituitary-adrenal axis activity in functional somatic disorders. *Biological Psychology* 87(2): 183-194. Link:

https://www.ncbi.nlm.nih.gov/pubmed/21315796

Tomic S, et al. (2017) Neuroendocrine disorder in chronic fatigue syndrome. *Turkish Journal of Medical Science* 47 (4): 1097-1103. Link: https://www.ncbi.nlm.nih.gov/pubmed/29154201

Van Den Eede F, *et al.* (2007) Hypothalamic-Pituitary-Adrenal Axis Function in Chronic Fatigue Syndrome. *Neuropsychobiology* 55(2): 112-120. Link: https://www.ncbi.nlm.nih.gov/pubmed/17596739

Van Den Eede F, *et al*. (2008) Combined dexamethasone/corticotropin-releasing factor test in chronic fatigue syndrome. *Psychological Medicine* 38(07): 963-973. Link: https://www.ncbi.nlm.nih.gov/pubmed/17803834

Wheatland R. (2005) Chronic ACTH autoantibodies are a significant pathological factor in the disruption of the hypothalamic-pituitary-adrenal axis in chronic fatigue syndrome, anorexia nervosa and major depression. *Medical Hypotheses* 65(2): 287-295. Link:

https://www.ncbi.nlm.nih.gov/pubmed/15885924

Wyller VB, *et al.* (2007) Abnormal thermoregulatory responses in adolescents with chronic fatigue syndrome: relation to clinical symptoms. *Pediatrics* 120: e129-e137. Link: https://www.ncbi.nlm.nih.gov/pubmed/17606539

Wyller VB, *et al.* (2017) Erratum to: Altered neuroendocrine control and association to clinical symptoms in adolescent chronic fatigue syndrome: a cross-sectional study. *Journal of Translational Medicine* 15: 157. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5514483/

4.19 Neurology: Neuropsychology and cognitive function

Beaumont A, et al. (2012) Reduced Cardiac Vagal Modulation Impacts on Cognitive Performance in Chronic Fatigue Syndrome. *PLoS ONE* 7(11): e49518. Link: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0049518

DeLuca J, et al. (1997) Cognitive functioning is impaired in patients with chronic fatigue syndrome devoid of psychiatric disease. *Journal of Neurology, Neurosurgery & Psychiatry 62*(2): 151-155. Link: https://www.ncbi.nlm.nih.gov/pubmed/9048715

Keynejad R et al. (2020) Attentional Processing and Interpretative Bias in Functional Neurological Disorder. *Psychosomatic Medicine* 82 (6): 586-592. Link: https://tinyurl.com/yaaqbc6l

Michiels V and Cluydts R. (2001) Neuropsychological functioning in chronic fatigue syndrome: a review. Acta Psychiatrica Scandinavica 103(2): 84-93. Link: https://www.ncbi.nlm.nih.gov/pubmed/11167310

Milrad SF, et al. (2017) Depression, evening salivary cortisol and inflammation in chronic fatigue syndrome: A psychoneuroendocrinological structural regression model. *International Journal of Psychophysiology 131:124-130*. Link: https://www.ncbi.nlm.nih.gov/pubmed/28918107

Natelson BH, et al. (2017) Multimodal and simultaneous assessments of brain and spinal fluid abnormalities in chronic fatigue syndrome and the effects of psychiatric comorbidity. *Journal of Neurological Science* 375: 411-416. Link: https://www.ncbi.nlm.nih.gov/pubmed/28320179

Rasouli O et al. (2019) Neuropsychological dysfunction in chronic fatigue syndrome and the relation between objective and subjective findings. *Neuropsychology* 33 (5): 658-669. Link: https://www.ncbi.nlm.nih.gov/pubmed/31169386

Roor JJ, et al. (2018) Feedback on underperformance in patients with chronic fatigue syndrome: the impact on subsequent neuropsychological test performance. *Applied Neuropsychology* [Epub ahead of print]. Link: https://www.tandfonline.com/doi/full/10.1080/23279095.2018.1519509

Sebaiti M et al. (2019) Macrophagic myofasciitis-associated dysfunctioning: An update of neuropsychological and neuroimaging features. Best Practise and Research Clinical Rheumatology [Epub ahead of print]. Link: https://tinyurl.com/y2q8uh3i

Teodoro T, et al. (2018) A unifying theory for cognitive abnormalities in functional neurological disorders, fibromyalgia and chronic fatigue syndrome: systematic review. Journal of Neurology, Neurosurgery and Psychiatry 98 (12): 1308-1319. Link: https://www.ncbi.nlm.nih.gov/pubmed/29735513

Van der Schaaf ME et al. (2018) Fatigue Is Associated with Altered Monitoring and Preparation of Physical Effort in Patients with Chronic Fatigue Syndrome. *Biological Psychiatry Cognitive Neuroscience and Neuroimaging 3 (4): 392-404.* Link: https://www.ncbi.nlm.nih.gov/pubmed/29628071

Vangeel EB, et al. (2018) Glucocorticoid receptor DNA methylation and childhood trauma in chronic fatigue syndrome patients. *Journal of Psychosomatic Research* 104: 55-60. Link: https://www.ncbi.nlm.nih.gov/pubmed/29275786

Wortinger LA, et al. (2017) Emotional conflict processing in adolescent chronic fatigue syndrome: A pilot study using functional magnetic resonance imaging. *Journal of Clinical and Experimental Neuropsychology* 39 (4): 355-368. Link: https://www.ncbi.nlm.nih.gov/pubmed/27647312

4.20 Neurology: Neurotransmitter function

Badawy AAB, *et al*. (2005) Heterogeneity of serum tryptophan concentration and availability to the brain in patients with the chronic fatigue syndrome. *Journal of Psychopharmacology* 19(4): 385-391. Link: https://www.ncbi.nlm.nih.gov/pubmed/15982993

Cao Y and Li Q. (2017) The variation of the 5-hydroxytryptamine system between chronic unpredictable mild stress rats and chronic fatigue syndrome rats induced by forced treadmill running. *Neuroreports* 28 (11): 630-637. Link: https://www.ncbi.nlm.nih.gov/pubmed/28505018

Cleare AJ, et al. (2005) Brain 5-HT1A receptor binding in chronic fatigue syndrome measured using positron emission tomography and [11C] WAY-100635. Biological Psychiatry 57(3): 239-246. Link: https://www.ncbi.nlm.nih.gov/pubmed/15691524

Georgiades E, et al. (2003) Chronic fatigue syndrome: new evidence for a central fatigue disorder. *Clinical Science* 105(2): 213-218. Link: https://www.ncbi.nlm.nih.gov/pubmed/12708966

Khan F, et al. (2003) Prolonged acetylcholine-induced vasodilatation in the peripheral microcirculation of patients with chronic fatigue syndrome. *Clinical Physiology and Functional Imaging* 23(5): 282-285. Link: https://www.ncbi.nlm.nih.gov/pubmed/12950326

Narita M, et al. (2003) Association between serotonin transporter gene polymorphism and chronic fatigue syndrome. Biochemical and Biophysical Research Communications 311(2): 264-266. Link: https://www.ncbi.nlm.nih.gov/pubmed/14592408

Noda M, et al. (2018) Glial Activation and Expression of the Serotonin Transporter in Chronic Fatigue Syndrome, *Frontiers in Psychiatry* 9. Link: https://www.frontiersin.org/articles/10.3389/fpsyt.2018.00589/full

Smith AK, *et al.* (2008) Genetic evaluation of the serotonergic system in chronic fatigue syndrome. *Psychoneuroendocrinology* 33(2): 188-197. Link: https://www.ncbi.nlm.nih.gov/pubmed/18079067

Spence VA, *et al.* (2000) Enhanced sensitivity of the peripheral cholinergic vascular response in patients with chronic fatigue syndrome. *The American Journal of Medicine* 108(9): 736-739. Link: https://www.amimed.com/article/S0002-9343(00)00407-1/fulltext

Yamamoto S, et al. (2004) Reduction of serotonin transporters of patients with chronic fatigue syndrome. *NeuroReport* 15(17): 2571-2574. Link: https://www.ncbi.nlm.nih.gov/pubmed/15570154

4.21 Pain

Al-Rawaf et al. (2019) MicroRNAs as biomarkers of pain intensity in patients with chronic fatigue syndrome. *Pain Practice* 19 (8): 848-860 Link: https://www.ncbi.nlm.nih.gov/pubmed/31282597

Collins SM, et al. (2017) Endogenous pain facilitation rather than inhibition differs between people with chronic fatigue syndrome, multiple sclerosis, and controls: An observational study. *Pain Physicians* 20 (4): E489-E497. Link: https://www.ncbi.nlm.nih.gov/pubmed/28535557

Conde-Antón Á et al. (2020) Effects of transcranial direct current stimulation and transcranial magnetic stimulation in patients with fibromyalgia. A systematic review. *Neurologia* Link: https://pubmed.ncbi.nlm.nih.gov/33071017/

Goudman L et al. (2020) Processing of Laser-Evoked Potentials in Patients with Chronic Whiplash-Associated Disorders, Chronic Fatigue Syndrome, and Healthy Controls: A Case-Control Study. *Pain Medicine* [Epuab ahead of print]. Link: https://www.ncbi.nlm.nih.gov/pubmed/32289826

Polli A, et al. (2018) Exercise-induce hyperalgesia, complement system and elastase activation in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome - a secondary analysis of experimental comparative studies, *Scandinavian Journal of Pain* [Epub ahead or print] Link:

https://www.ncbi.nlm.nih.gov/pubmed/30325737

Oaklander A and Nolano M (2019) Scientific Advances in and Clinical Approaches to Small-Fiber Polyneuropathy. *JAMA Network* [Epuba ahead of print]. Link: https://jamanetwork.com/journals/jamaneurology/article-abstract/2749401

Surian A and Baraniuk A (2020) Systemic Hyperalgesia in Females with Gulf War Illness, Chronic Fatigue Syndrome and Fibromyalgia. *Scientific Reports* 10: 5751. Link: https://www.nature.com/articles/s41598-020-62771-9

Yen LT et al. (2020) Preventing the induction of acid saline-induced fibromyalgia pain in mice by electroacupuncture or APETx2 injection. Acupuncture in Medicine [Epub ahead of print]. Link:

https://www.ncbi.nlm.nih.gov/pubmed/31986902

4.22 Phenotypes and sub-groups

Huber K et al. (2018) Latent class analysis of a heterogeneous international sample of patients with myalgic encephalomyelitis/chronic fatigue syndrome. Fatigue: Biomedicine, Health and Behaviour 6 (3). Link: https://www.tandfonline.com/doi/abs/10.1080/21641846.2018.1494530?journal@code=rftg20

Lewis I, et al. (2013) Clinical characteristics of a novel subgroup of chronic fatigue syndrome patients with postural orthostatic tachycardia syndrome. *Journal of Internal Medicine* 273(5): 501-510. Link: https://www.ncbi.nlm.nih.gov/pubmed/23206180

Moneghetti KJ, et al. (2018) Value of Circulating Cytokine Profiling During Submaximal Exercise Testing in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. *Scientific Reports* 8 (1): 2779. Link: https://www.ncbi.nlm.nih.gov/pubmed/29426834

Nagy-Szakal D, et al. (2017) Fecal metagenomic profiles in subgroups of patients with myalgic encephalomyelitis/chronic fatigue syndrome. *Microbiome* 5: 44. Link:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5405467/

Nagy-Szaki D, et al. (2018) Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics. *Scientific Reports 8 (1): 10056.* Link: https://www.ncbi.nlm.nih.gov/pubmed/29968805

Nijs J and Ickmans K. (2013) Postural orthostatic tachycardia syndrome as a clinically important subgroup of chronic fatigue syndrome: further evidence for central nervous system dysfunctioning. *Journal of Internal Medicine* 273(5): 498-500. Link: https://onlinelibrary.wiley.com/doi/full/10.1111/joim.12034

Sarzi-Puttini P et al. (2020) Fibromyalgia: an update on clinical characteristics, aetiopathogenesis and treatment *Nature Reviews Rheumatology* Link: https://pubmed.ncbi.nlm.nih.gov/33024295/

Stoothoff J, et al. (2017) Subtyping Patients with Myalgic Encephalomyelitis (ME) and Chronic Fatigue Syndrome (CFS) By Course of Illness. *Journal of Biosensors, Biomarkers and Diagnoses* 2 (1). Link:

https://www.ncbi.nlm.nih.gov/pubmed/29204592

Unger ER, et al. (2017) Multi-Site Clinical Assessment of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (MCAM): Design and Implementation of a Prospective/Retrospective Rolling Cohort Study. American Journal of Epidemiology 185 (8): 617-626. Link: https://www.ncbi.nlm.nih.gov/pubmed/28338983

Williams TE, et al. (2017) Heterogeneity in chronic fatigue syndrome - empirically defined subgroups from the PACE trial. *Psychological Medicine* 47 (8): 1454-1465. Link: https://www.ncbi.nlm.nih.gov/pubmed/28112075

VanNess JM, *et al.* (2003) Subclassifying Chronic Fatigue Syndrome through Exercise Testing. *Medicine & Science in Sports & Exercise* 35(6): 908-913. Link: https://www.ncbi.nlm.nih.gov/pubmed/12783037

Xu J, et al. (2018) A new approach to find biomarkers in chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) by single-cell Raman microspectroscopy. *RSC*, *Analyst*, 144 (3): 913-920. Link: http://pubs.rsc.org/en/Content/ArticleLanding/2018/AN/C8AN01437J#!divAbstract

4.23 Post-Exertional Malaise (PEM)

Bouquet J et al. (2019) Whole blood human transcriptome and virome analysis of ME/CFS patients experiencing post-exertional malaise following cardiopulmonary exercise testing. *PLoS One* 14 (3). Link: https://www.ncbi.nlm.nih.gov/pubmed/30897114

Chu L, et al. (2018) Deconstructing post-exertional malaise in myalgic encephalomyelitis/ chronic fatigue syndrome: A patient-centered, cross-sectional survey. *PLoS One 13(6)*. Link: https://www.ncbi.nlm.nih.gov/pubmed/29856774

Cook DB, et al. (2017) Neural consequences of post-exertion malaise in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. *Brain and Behavioural Immunology* 62: 87-99. Link: https://www.ncbi.nlm.nih.gov/pubmed/28216087

Ghali A et al. (2019) Elevated blood lactate in resting conditions correlate with post-exertional malaise severity in patients with Myalgic encephalomyelitis/Chronic fatigue syndrome. *Scientific Reports* 9: 18817. Link: https://www.nature.com/articles/s41598-019-55473-4

Holtzman C et al. (2019) Assessment of Post-Exertional Malaise (PEM) in Patients with Myalgic Encephalomyelitis (ME) and Chronic Fatigue Syndrome (CFS): A Patient-Driven Survey. *Diagnostics* 9 (1). Link: https://www.mdpi.com/2075-4418/9/1/26

Holtzman C et al. (2020) Factors Affecting the Characterization of Post-Exertional Malaise Derived from Patient Input. *Journal of Health Disparities Research and Practise* 13 (2). Link: https://digitalscholarship.unlv.edu/jhdrp/vol13/iss2/5/

Jason LA, et al. (2018) The development of an instrument to assess post-exertional malaise in patients with myalgic encephalomyelitis and chronic fatigue syndrome, *Journal of Health Psychology* [Epub ahead or print] Link: https://www.ncbi.nlm.nih.gov/pubmed/30354489

Mateo L et al. (2020) Post-exertional symptoms distinguish myalgic encephalomyelitis/chronic fatigue syndrome subjects from healthy controls. *Work* [Epub ahead of print]. Link: https://content.iospress.com/articles/work/wor203168

May M et al. (2019) Post-exertional malaise is associated with greater symptom burden and psychological distress in patients diagnosed with Chronic Fatigue Syndrome. *Journal of Psychosomatic Research* 129: 109893. Link: https://www.sciencedirect.com/science/article/abs/pii/S0022399919304672

McGregor N et al. (2019) Post-Exertional Malaise Is Associated with Hypermetabolism, Hypoacetylation and Purine Metabolism Deregulation in ME/CFS Cases. *Diagnostics* 9 (3). Link: https://www.ncbi.nlm.nih.gov/pubmed/31277442

McManimen SL and Jason LA. (2017) Post-Exertional Malaise in Patients with ME and CFS with Comorbid Fibromyalgia. *SRL Neurology and Neurosurgery* 3 (1): 22-27. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5464757/

McManimen SL, Sunquist ML and Jason LA (2019) Deconstructing post-exertional malaise: an exploratory analysis. *Journal of Health Psychology* Link: https://www.ncbi.nlm.nih.gov/pubmed/27557649

Paul L, et al. (1999) Demonstration of delayed recovery from fatiguing exercise in chronic fatigue syndrome. *European Journal of Neurology* 6(1): 63-69. Link: https://www.ncbi.nlm.nih.gov/pubmed/10209352

Stussman B et al. (2020) Characterization of Post–exertional Malaise in Patients With Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. *Frontiers in Neurology* 11: 1025. Link:

https://www.frontiersin.org/articles/10.3389/fneur.2020.01025/full

4.24 Post-mortem research

Cader S, et al. (2009) Neuropathology of post-infectious chronic fatigue syndrome. *Journal of the Neurological Sciences* 285: S60-S61. Link: http://www.ins-journal.com/article/S0022-510X(09)70274-6/abstract

Lacerda EM, et al. (2010) Exploring the feasibility of establishing a disease-specific post-mortem tissue bank in the UK: a case study in ME/CFS. *Journal of Clinical Pathology* 63(11): 1032-1034. Link: https://www.ncbi.nlm.nih.gov/pubmed/20924033

McGarry F, et al. (1994) Enterovirus in the Chronic Fatigue Syndrome. Annals of Internal Medicine 120(11): 972-973. Link: http://annals.org/aim/article-abstract/707439/enterovirus-chronic-fatigue-syndrome

Nacul LC, *et al*. (2014) Considerations in establishing a post-mortem brain and tissue bank for the study of myalgic encephalomyelitis/chronic fatigue syndrome: a proposed protocol. *BMC Research Notes* 7: 370. Link: https://bmcresnotes.biomedcentral.com/articles/10.1186/1756-0500-7-370

4.25 Sleep disturbance

Armitage R, et al. (2007) The Impact of a 4-Hour Sleep Delay on Slow Wave Activity in Twins Discordant for Chronic Fatigue Syndrome. *Sleep 30(5): 657-662*. Link: https://www.ncbi.nlm.nih.gov/pubmed/17552382

Castro-Marrero J, et al. (2018) Poor self-reported sleep quality and health-related quality of life in patients with chronic fatigue syndrome/myalgic encephalomyelitis. Journal of Sleep Research 27 (6) Link: https://www.ncbi.nlm.nih.gov/pubmed/29770505

Campbell R, et al. (2018) Reciprocal associations between daily need-based experiences, energy, and sleep in chronic fatigue syndrome, *Health Psychology* 37 (12): 1168-1178 Link: https://www.ncbi.nlm.nih.gov/pubmed/30321019

Fatt SJ et al. (2019) Parasympathetic activity is reduced during slow-wave sleep, but not resting wakefulness, in patients with chronic fatigue syndrome. *Journal of Clinical Sleep Medicine* [Epub ahead of print]. Link: https://www.ncbi.nlm.nih.gov/pubmed/31771749

Gotts ZM, et al. (2013) Are there sleep-specific phenotypes in patients with chronic fatigue syndrome? A cross-sectional polysomnography analysis. *BMJ* Open 3(6): e002999. Link: http://bmjopen.bmj.com/content/3/6/e002999

Gotts ZM, *et al*. (2015) The Association between Daytime Napping and Cognitive Functioning in Chronic Fatigue Syndrome. *PLoS ONE* 10(1): e0117136. Link: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0117136

Gotts ZM, et al. (2016a) A comparative polysomnography analysis of sleep in healthy controls and patients with chronic fatigue syndrome. *Fatigue: Biomedicine, Health & Behavior* 4(2): 80-93. Link: http://www.tandfonline.com/doi/abs/10.1080/21641846.2016.1167470

Gotts ZM, et al. (2016b) The experience of sleep in chronic fatigue syndrome: A qualitative interview study with patients. *British Journal of Health Psychology* 21(1): 71-92. Link: https://www.ncbi.nlm.nih.gov/pubmed/25728396

Gupta A, Deka R and Gupta S (2020) A Critical Review to Investigate Chronic Fatigue Syndrome as Sleep Disorder, *E-Cronicon* 12 (1). Link: https://ecronicon.com/ecne/a-critical-review-to-investigate-chronic-fatigue-syndrome-as-sleep-disorder.php

Jackson ML and Bruck D. (2012) Sleep abnormalities in chronic fatigue syndrome/ myalgic encephalomyelitis: a review. Journal of Clinical Sleep Medicine 8(6): 719-728. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3501671/

Jain V, et al. (2017) Prevalence of and risk factors for severe cognitive and sleep symptoms in ME/CFS and MS. BMC Neurology 17: 117. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5477754/

Josev EK, et al. (2017) Sleep Quality in Adolescents with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME). Journal of Clinical Sleep Medicine 13 (9): 1057-1066. Link: https://www.ncbi.nlm.nih.gov/pubmed/28760189

Joustra ML, *et al.* (2018) Physical Activity and Sleep in Chronic Fatigue Syndrome and Fibromyalgia Syndrome: Associations with Symptom Severity in the General Population Cohort LifeLines. *Pain Research and Management* 2018: 8. Link: https://www.hindawi.com/journals/prm/2018/5801510/

Maness C et al. (2018) Systemic exertion intolerance disease/chronic fatigue syndrome is common in sleep centre patients with hypersomnolence: A retrospective pilot study. Journal of Sleep Research 28 (3). Link: https://www.ncbi.nlm.nih.gov/pubmed/29624767

Moldofsky H. (1989) Nonrestorative sleep and symptoms after a febrile illness in patients with fibrositis and chronic fatigue syndromes. *The Journal of Rheumatology Supplement* 19: 150-53. Link: http://europepmc.org/abstract/med/3236304

Morriss RK, et al. (1997) The relation of sleep difficulties to fatigue, mood and disability in chronic fatigue syndrome. Journal of Psychosomatic Research 42(6): 597-605. Link: https://www.ncbi.nlm.nih.gov/pubmed/9226607

Morris G, et al. (2018) The putative role of oxidative stress and inflammation in the pathophysiology of sleep dysfunction across neuropsychiatric disorders: Focus on chronic fatigue syndrome, bipolar disorder and multiple sclerosis, Sleep Medicine Reviews 41: 255-265. Link: https://www.ncbi.nlm.nih.gov/pubmed/29759891

Orjatsalo M, et al. (2017) Autonomic Nervous System Functioning Related to Nocturnal Sleep in Patients with Chronic Fatigue Syndrome Compared to Tired Controls. *Journal of Clinical Sleep Medicine*. Link: https://www.ncbi.nlm.nih.gov/pubmed/29246267

Pedersen M, et al. (2017) Sleep-wake rhythm disturbances and perceived sleep in adolescent chronic fatigue syndrome. *Journal of Sleep Research* 26 (5): 595-601. Link: https://www.ncbi.nlm.nih.gov/pubmed/28470767

Pajediene E et al. (2018) Sleep patterns among patients with chronic fatigue: A polysomnography-based study. The Clinical Respiratory Journal 12 (4): 1389-1397. Link: https://www.ncbi.nlm.nih.gov/pubmed/28752613

Rahman K, *et al.* (2011) Sleep-wake behaviour in chronic fatigue syndrome. *Sleep* 34(5): 671-678. Link: https://academic.oup.com/sleep/article/34/5/671/2281516

Shan ZY, et al. (2017) Medial prefrontal cortex deficits correlate with unrefreshing sleep in patients with chronic fatigue syndrome. *NMR Biomedicine* 30 (10). Link: https://www.ncbi.nlm.nih.gov/pubmed/28661067

4.26 Vision

Ashmed NS, *et al.* (2018) Restricted Spatial Windows of Visibility in Myalgic Encephalomyelitis (ME). *Vision* 2 (10): 2. Link: http://www.mdpi.com/2411-5150/2/1/2

5. Psychiatry and psychology

Brooks SK, et al. (2017) Chronic Fatigue Syndrome: Cognitive, Behavioural and Emotional Processing Vulnerability Factors. *Behavioural and Cognitive Psychotherapy* 45 (2): 156-169. Link: https://www.ncbi.nlm.nih.gov/pubmed/28098051

Bram A, et al. (2018) Chronic fatigue syndrome and the somatic expression of emotional distress: Applying the concept of illusory mental health to address the controversy. *Journal of Clinical Psychology 75 (1): 116-131*. Link: https://www.ncbi.nlm.nih.gov/pubmed/30152867

Bram A, et al. (2018) Emotional Regulation in Women with Chronic Fatigue Syndrome and Depression: Internal Representations and Adaptive Defenses. *Journal of American Psychoanalytic Association* 66 (4): 701-741. Link: https://www.ncbi.nlm.nih.gov/pubmed/30249136

Bransfield RC and Friedman KJ (2019) Differentiating Psychosomatic, Somatopsychic, Multisystem Illnesses and Medical Uncertainty. *Healthcare* 7 (4): 114. Link: https://tinyurl.com/y2cvsoz2

Chandan JS, et al. (2019) Association between child maltreatment and central sensitivity syndromes: a systematic review protocol. *BMJ Open* 9 (2). Link: https://tinyurl.com/y26z76r7

Clark JE, et al. (2017) Rethinking Childhood Adversity in Chronic Fatigue Syndrome. Fatigue: Biomedicine, Health and Behaviour 6 (1). Link: http://www.tandfonline.com/doi/full/10.1080/21641846.2018.1384095

Daniels J et al. (2019) 'Prevalence and Treatment of Chronic Fatigue Syndrome/ME and Co-morbid Severe Health Anxiety', *Journal of the International Neuropsychological Society* [Epub ahead of print] Link: https://researchportal.bath.ac.uk/en/publications/prevalence-and-treatment-of-chronic-fatique-syndromeme-and-co-mor

De Venter M, et al. (2017) Differential effects of childhood trauma subtypes on fatigue and physical functioning in chronic fatigue syndrome. Comprehensive Psychiatry 78: 76-82. Link: https://www.ncbi.nlm.nih.gov/pubmed/28806608

De Venter M et al. (2020) The Relationship Between Childhood Trauma and the Response to Group Cognitive-Behavioural Therapy for Chronic Fatigue Syndrome. *Frontiers in Psychiatry* 11: 563. Link: https://www.frontiersin.org/articles/10.3389/fpsyt.2020.00536/full

Doerr JM, et al. (2017) Patterns of control beliefs in chronic fatigue syndrome: results of a population-based survey. *MBC Psychology* 5: 6. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5340015/

Geraghty K and Scott MJ (2020) Treating medically unexplained symptoms via improving access to psychological therapy (IAPT): major limitations identified. *BMC Psychology* 8 (1): 13. Link:

https://www.ncbi.nlm.nih.gov/pubmed/32020880

Hughes AM, *et al*. (2017) Cross-Cultural Study of Information Processing Biases in Chronic Fatigue Syndrome: Comparison of Dutch and UK Chronic Fatigue Patients. *International Journal of Behavioural Medicine*. Link: https://www.ncbi.nlm.nih.gov/pubmed/28836119

Hughes AM, et al. (2017) An attention and interpretation bias for illness-specific information in chronic fatigue syndrome. *Psychological Medicine* 47 (5): 853-865. Link: https://www.ncbi.nlm.nih.gov/pubmed/27894380

Jacob L et al. (2020) Associations of physical and psychiatric conditions with chronic fatigue syndrome in Germany: an exploratory case-control study. *Psychological Medicine* 1-7. Link: https://pubmed.ncbi.nlm.nih.gov/32686638/

Lian OS and Grue J. (2017) Generating a Social Movement Online Community through an Online Discourse: The Case of Myalgic Encephalomyelitis. *Journal of Medical Humanities* 38 (2): 173-189. Link: https://www.ncbi.nlm.nih.gov/pubmed/27059618

Malfliet A, et al. (2017) Kinesiophobia and maladaptive coping strategies prevent improvements in pain catastrophizing following pain neuroscience education in fibromyalgia/chronic fatigue syndrome: An explorative study. *Physiotherapy Theory and Practice* 33 (8): 653-660. Link: https://www.ncbi.nlm.nih.gov/pubmed/28605207

Maroti D, et al. (2017) Differences in alexithymia and emotional awareness in exhaustion syndrome and chronic fatigue syndrome. Scandinavian Journal of Psychology 58 (1): 52-61. Link: https://www.ncbi.nlm.nih.gov/pubmed/27686801

Larkin D and Martin CR. (2017) The interface between chronic fatigue syndrome and depression: A psychobiological and neurophysiological conundrum. *Neurophysiology Clinic* 47 (2): 123-129. Link: https://www.ncbi.nlm.nih.gov/pubmed/28314518

Petersen M et al. (2019) Prevalence of functional somatic syndromes and bodily distress syndrome in the Danish population: the DanFunD study. *Scandinavian Journal of Public Health* [Epub ahead of print]. Link: https://tinyurl.com/y6429lgy

Sirois FM and Hirsch JK (2019) Self-compassion and Adherence in Five Medical Samples: the Role of Stress. *Mindfulness* 10 (1): 46-54. Link: https://tinyurl.com/yxh226vf

Terman JM et al. (2019) How Psychiatric Referrals Influence Stigmatization in Patients with Myalgic Encephalomyelitis and Chronic Fatigue Syndrome: an examination of American and British Models. Community Psychology in Global Perspective 5 (2): 19-29. Link: https://tinyurl.com/yyxhqzup

Thompson et al. (2019) Cognitive factors are associated with disability and pain, but not fatigue among physiotherapy attendees with persistent pain and fatigue. *Physiotherapy* [Epub ahead of print]. Link: https://tinyurl.com/yyep9zu8

Van Deuren S et al. (2020) Fatigue-Related Cognitive-Behavioral Factors in Survivors of Childhood Cancer: Comparison with Chronic Fatigue Syndrome and Survivors of Adult-Onset Cancer. *Journal of Adolescent and Young Adult Oncology* [Epub ahead of print]. Link: https://www.liebertpub.com/doi/10.1089/jayao.2020.0094

Wilde L et al. (2020) "The real me shining through M.E.": Visualizing masculinity and identity threat in men with myalgic encephalomyelitis/chronic fatigue syndrome using photovoice and IPA. *Psychology of Men & Masculinities*, 21 (2), 309–320. Link: https://psychet.apa.org/record/2019-32617-001

Williams AM, Christopher G and Jenkinson E. (2019) The psychological impact of dependency in adults with chronic fatigue syndrome/myalgic encephalomyelitis: A qualitative exploration. *Journal of Health Psychology* 24 (2): 264-275. Link: https://www.ncbi.nlm.nih.gov/pubmed/27098385

Zhang F et al. (2019) Artificial intelligence-based discovery of the association between depression and chronic fatigue syndrome. *Journal of Affective Disorders* [Epub ahead of print]. Link: https://www.ncbi.nlm.nih.gov/pubmed/30877861

6. Sociology

Blease C and Geraghty K. (2018) Are ME/CFS Patient Organizations "Militant"? Patient Protest in a Medical Controversy. *Journal of Bioethical Inquires [Epub ahead of print]*. Link: https://www.ncbi.nlm.nih.gov/pubmed/29971693

Cuesta A et al. (2019) Fibromyalgia, Chronic Fatigue Syndrome, and Multiple Chemical Sensitivity: Illness Experiences. *Clinical Nursing Research* [Epub ahead of print]. Link: https://tinyurl.com/y68aa9ak

McManimen SL, et al. (2018) Effects of unsupportive social interactions, stigma, and symptoms on patients with myalgic encephalomyelitis and chronic fatigue syndrome, *Journal of Community Psychology* 46 (8): 959-971. Link: https://www.ncbi.nlm.nih.gov/pubmed/30311972

Milrad S et al. (2019) Relationship satisfaction, communication self-efficacy, and chronic fatigue syndrome-related fatigue. *Social Science and Medicine* 237. Link:

https://www.sciencedirect.com/science/article/abs/pii/S0277953619303776

Murray R et al. (2019) Duvet woman versus action man: the gendered aetiology of Chronic Fatigue Syndrome according to English newspapers. *Feminist Media Studies*. Link: https://tinyurl.com/yyfayo7v

Noble S et al. (2019) Could disease labelling have positive effects? An experimental study exploring the effect of the chronic fatigue syndrome label on intended social support. *Patient Education and Counselling* 102 (3): 486-493. Link: https://www.ncbi.nlm.nih.gov/pubmed/30514660

Plioplys AV, et al. (1997) Meeting the Frustrations of Chronic Fatigue Syndrome. Hospital Practice 32(6): 147-166. Link: http://www.tandfonline.com/doi/abs/10.1080/21548331.1997.11443513

Terman JM, et al. (2018) Confirmatory factor analysis of a myalgic encephalomyelitis and chronic fatigue syndrome stigma scale. *Journal of Health Psychology [Epub ahead of print]* Link: https://www.ncbi.nlm.nih.gov/pubmed/30183363

Siegel ZA, *et al.* (2017) A content analysis of chronic fatigue syndrome and myalgic encephalomyelitis in the news from 1987 to 2013. Chronic Illness 1: 1742395317703175. Link: https://www.ncbi.nlm.nih.gov/pubmed/28403636

7. Future research recommendations

Davenport T, et al. (2018) Checking our blind spots: current status of research evidence summaries in ME/CFS. *British Journal of Sports Medicine 53 (19): 1198.* Link: https://www.ncbi.nlm.nih.gov/pubmed/30018122

Devendorf AR, et al. (2019) Approaching recovery from myalgic encephalomyelitis and chronic fatigue syndrome: Challenges to consider in research and practice. *Journal of Health Psychology 24 (10): 1412-1424*. Link: https://www.ncbi.nlm.nih.gov/pubmed/29182007

Friedman K (2019) Advances in ME/CFS: Past, Present, and Future. *Frontiers in Pediatrics* 7: 131. Link: https://tinyurl.com/y63lthdg

Gleason K., et al. (2018) Operationalizing Substantial Reduction in Functioning Among Young Adults with Chronic Fatigue Syndrome. *International Journal of Behavioural Medicine [Epub ahead of print]*. Link: https://www.ncbi.nlm.nih.gov/pubmed/29872989

Green CR, *et al.* (2015) National Institutes of Health Pathways to Preventions Workshop: Advancing the Research on Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome. *Annals of Internal Medicine* 162 (12): 860-865. Link: https://www.ncbi.nlm.nih.gov/pubmed/26075757

Jeffrey M et al. (2019) Treatment Avenues in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Split-gender Pharmacogenomic Study of Gene-expression Modules. *Clinical Therapeutics* 41 (5): 815-835. Link: https://www.sciencedirect.com/science/article/abs/pii/S0149291819300475

Karfakis N. (2018) The biopolitics of CFS/ME. Studies in History and Philosophy of Biological and Biomedical Science [Epub ahead of print]. Link: https://www.ncbi.nlm.nih.gov/pubmed/29887516

Mirin A et al. (2020) Research Update: The Relation Between ME/CFS Disease Burden and Research Funding in the USA. *Work* [Epub ahead of print]. Link: https://pubmed.ncbi.nlm.nih.gov/32568148/

Monro JA and Puri BK (2018) A Molecular Neurobiological Approach to Understanding the Aetiology of Chronic Fatigue Syndrome (Myalgic Encephalomyelitis or Systemic Exertion Intolerance Disease) with Treatment Implications. Molecular Neurobiology 55 (9): 7377-7388. Link: https://www.ncbi.nlm.nih.gov/pubmed/29411266

Morris G. et al. (2019) Myalgic encephalomyelitis or chronic fatigue syndrome: how could the illness develop? *Metabolic Brain Disease* 1-31. Link: https://link.springer.com/article/10.1007%2Fs11011-019-0388-6#citeas

Murdock KW, *et al.* (2017) The utility of patient-reported outcome measures among patients with myalgic encephalomyelitis/chronic fatigue syndrome. Quality of Life Research 26 (4): 913-921. Link: https://www.ncbi.nlm.nih.gov/pubmed/27600520

Naviaux RK. (2018) Metabolic features and regulation of the healing cycle – A new model for chronic disease pathogenesis and treatment. *Mitochondrion*. Link: https://www.sciencedirect.com/science/article/pii/\$1567724918301053

Pheby D, et al. (2011) A Disease Register for ME/CFS: Report of a Pilot Study. BMC Research Notes 4: 139. Link: https://www.ncbi.nlm.nih.gov/pubmed/21554673

Rusin A, et al. (2018) Chronic fatigue and immune deficiency syndrome (CFIDS), cellular metabolism, and ionizing radiation: a review of contemporary scientific literature and suggested directions for future research. *International Journal of Radiation Biology* 10: 1-17. Link:

https://www.ncbi.nlm.nih.gov/pubmed/29297728

Sharpe M, et al. (1991) A report – chronic fatigue syndrome: guidelines for research. Journal of the Royal Society of Medicine 84 (2): 118-121. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1293107/pdf/jrsocmed00127-0072.pdf

Theoharides TC (2019) In Search of Effective Treatments for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. *Clinical Therapeutics* 41 (5): 796-797. Link: https://www.clinicaltherapeutics.com/article/S0149-2918(19)30175-4/abstract

Tokunaga K et al. (2020) Inclusion of family members without ME/CFS in research studies promotes discovery of biomarkers specific for ME/CFS. Work [Epuab ahead of print]. Link: https://content.iospress.com/articles/work/wor203177

Twisk FNM (2019) Myalgic Encephalomyelitis, Chronic Fatigue Syndrome, and Chronic Fatigue: Three Distinct Entities Requiring Completely Different Approaches. *Current Rheumatological Reports* 21 (6): 27. Link: https://www.ncbi.nlm.nih.gov/pubmed/31073713

White P (2019) A perspective on causation of the chronic fatigue syndrome by considering its nosology. *Journal of Evaluation in Clinical Practice* 25 (6): 991-996. Link: https://www.ncbi.nlm.nih.gov/pubmed/31373106

8. Clinical assessment, symptoms, and diagnosis

8.1 General

Arnett SV and Clark IA. (2012) Inflammatory fatigue and sickness behaviour – Lessons for the diagnosis and management of chronic fatigue syndrome. Journal of Affective Disorders 141(2–3): 130-142. Link: https://www.ncbi.nlm.nih.gov/pubmed/22578888

Ayres JG, *et al.* (1998) Post-infection fatigue syndrome following Q fever. QJM 91(2): 105-123. Link: https://www.ncbi.nlm.nih.gov/pubmed/9578893

Baraniuk JN, et al. (1998) Rhinitis Symptoms in Chronic Fatigue Syndrome. Annals of Allergy, Asthma & Immunology 81 (4): 359-365. Link: https://www.ncbi.nlm.nih.gov/pubmed/9809501

Bedree H et al. (2019) The DePaul Symptom Questionnaire-2: a validation study. Fatigue: Biomedicine, *Health and Behavior* 7 (3). Link: https://www.tandfonline.com/doi/abs/10.1080/21641846.2019.1653471

Berger JR, *et al*. (2013) Fatigue heralding multiple sclerosis. *Multiple Sclerosis Journal* 19(11): 1526-1532. Link:

https://www.ncbi.nlm.nih.gov/pubmed/23439577

Bileviciute-Ljungar I, *et al.* (2018) Patients with chronic fatigue syndrome do not score higher on the autism-spectrum quotient than healthy controls: Comparison with autism spectrum disorder. Scandanavian Journal of Psychology [Epub ahead of print]. Link:

https://www.ncbi.nlm.nih.gov/pubmed/2973807

Blitshteyn S and Chopra P (2018) Chronic Fatigue Syndrome: From Chronic Fatigue to More Specific Syndromes, *European Neurology* 80 (1-2): 73-77. Link: https://www.ncbi.nlm.nih.gov/pubmed/30286454

Brenu EW, *et al*. (2011) Immunological abnormalities as potential biomarkers in chronic fatigue syndrome/myalgic encephalomyelitis. *Journal of Translational* Medicine 9: 81. Link: https://translational-medicine.biomedcentral.com/articles/10.1186/1479-5876-9-81

Burnet RB and Chatterton BE. (2004) Gastric emptying is slow in chronic fatigue syndrome. *BMC Gastroenterology* 4: 32. Link: https://bmcgastroenterol.biomedcentral.com/articles/10.1186/1471-230X-4-32

Calabrese LH, et al. (1994) Chronic Fatigue Syndrome and a Disorder Resembling Sjogren's Syndrome: Preliminary Report. Clinical Infectious Diseases 18(Supplement 1): S28-S31. Link: https://www.ncbi.nlm.nih.gov/pubmed/8148449

Cottle LE, et al. (2012) Lyme disease in a British referral clinic. QJM 105(6): 537-543. Link: https://academic.oup.com/gimed/article/105/6/537/1560675

Eguchi A et al. (2019) Identification of actin network proteins, talin-1 and filamin-A, in circulating extracellular vesicles as blood biomarkers for human myalgic encephalomyelitis/chronic fatigue syndrome. Brain, Behaviour and Immunity [Epub ahead of print]. Link:

https://www.sciencedirect.com/science/article/pii/S0889159119307627

Faulkner S and Smith A. (2008) A longitudinal study of the relationship between psychological distress and recurrence of upper respiratory tract infections in chronic fatigue syndrome. *British Journal of Health Psychology* 13(1): 177-186. Link: https://www.ncbi.nlm.nih.gov/pubmed/17535488

Gaber TA-Z, et al. (2014) Multiple sclerosis/chronic fatigue syndrome overlap: when two common disorders collide. *NeuroRehabilitation* 35(3): 529-534. Link: https://www.ncbi.nlm.nih.gov/pubmed/25238862

Higgins JNP, *et al.* (2017) Chronic fatigue syndrome and idiopathic intracranial hypertension: Different manifestations of the same disorder of intracranial pressure? *Medical Hypotheses* 105: 6-9. Link: https://www.ncbi.nlm.nih.gov/pubmed/28735654

Hurel SJ, et al. (1995) Patients with a self-diagnosis of myalgic encephalomyelitis [Letter to the editor]. *BMJ* 311(7000): 329. Link: http://www.bmj.com/content/311/7000/329.1

Hyland M et al. (2019) Symptom frequency and development of a generic functional disorder symptom scale suitable for use in studies of patients with irritable bowel syndrome, fibromyalgia syndrome or chronic fatigue syndrome. Chronic Diseases and translational Medicine 5 (2): 129-138. Link: https://tinyurl.com/y2aabtta

Jason LA and Sunnquist M (2018) The Development of the DePaul Symptom Questionnaire: Original, Expanded, Brief, and Pediatric Versions, Frontiers in Pediatrics 6: 330. Link: https://www.ncbi.nlm.nih.gov/pubmed/30460215

Kavi L, et al. (2016) A profile of patients with postural tachycardia syndrome and their experience of healthcare in the UK. *The British Journal of Cardiology* 23(1): 33. Link: https://bjcardio.co.uk/2016/03/a-profile-of-patients-with-postural-tachycardia-syndrome-and-their-experience-of-healthcare-in-the-uk/

Kim Dy et al., (2020) Systematic Review of Primary Outcome Measurements for Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) in Randomized Controlled Trials. *Journal of Clinical Medicine* Link: https://pubmed.ncbi.nlm.nih.gov/33126460/

Klebek L et al. (2019) Differentiating post-polio syndrome from myalgic encephalomyelitis and chronic fatigue syndrome. *Fatigue: Biomedicine, Health and Behaviour.* Link:

https://www.tandfonline.com/doi/abs/10.1080/21641846.2019.1687117

Korenromp IHE, *et al*. (2011) Characterization of chronic fatigue in patients with sarcoidosis in clinical remission. *Chest* 140(2): 441-447. Link: https://www.ncbi.nlm.nih.gov/pubmed/21330380

Kuratsune H. (2018) Diagnosis and Treatment of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. *Brain and Nerves* 70 (1): 11-18. Link: https://www.ncbi.nlm.nih.gov/pubmed/29348370 (Article in Japanese)

Lewis I, et al. (2013) Clinical characteristics of a novel subgroup of chronic fatigue syndrome patients with postural orthostatic tachycardia syndrome. *Journal of Internal Medicine* 273(5): 501-510. Link: https://www.ncbi.nlm.nih.gov/pubmed/23206180

Ling H, et al. (2011) Decades of delayed diagnosis in 4 levodopa-responsive young-on- set monogenetic parkinsonism patients. *Movement Disorders* 26(7): 1337-1340. Link: http://onlinelibrary.wiley.com/doi/10.1002/mds.23563/full

Maclachlan L, *et al.* (2017) Are current chronic fatigue syndrome criteria diagnosing different disease phenotypes? *PLoS One* 12 (10): e0186885. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5650174/

Maes M et al. (2019) Is a diagnostic blood test for chronic fatigue syndrome on the horizon? *Expert Review of Molecular Diagnostics* [Epub ahead of print]. Link: https://www.tandfonline.com/doi/full/10.1080/14737159.2020.1681976

Martin-Martinez E and Martin-Martinez M (2019) Varied Presentation of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and the Needs for Classification and Clinician Education: A Case Series. *Clinical Therapeutics* 41 (4): 619-624. Link: https://www.clinicaltherapeutics.com/article/S0149-2918(19)30114-6/fulltext

Murga I and Lafuente JV (2019) From neurasthenia to post-exertion disease: Evolution of the diagnostic criteria of chronic fatigue syndrome/myalgic encephalomyelitis. *Atencion Primaria* [Epub ahead of print]. Link: https://www.ncbi.nlm.nih.gov/pubmed/31182238

Nacul L, et al. (2017) How have selection bias and disease misclassification undermined the validity of myalgic encephalomyelitis/chronic fatigue syndrome studies? *Journal of Health Psychology* 24 (12): 1765-1769 Link: https://www.ncbi.nlm.nih.gov/pubmed/28810428

National Institute for Health and Care Excellence. (2007) Chronic fatigue syndrome/myalgic encephalomyelitis (or encephalopathy): diagnosis and management. *NICE guidelines [CG53]*. Link: https://www.nice.org.uk/guidance/cg53

Nelson MJ et al. (2019) Diagnostic sensitivity of 2-day cardiopulmonary exercise testing in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. *Journal of Translational Medicine 17 (1)*: 80. Link: https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-019-1836-0

Newton JL, et al. (2006) Fatigue in primary biliary cirrhosis is associated with excessive daytime somnolence. *Hepatology* 44(1): 91-98. Link: https://www.ncbi.nlm.nih.gov/m/pubmed/16800007/

Newton JL, *et al*. (2008) Fatigue in non-alcoholic fatty liver disease (NAFLD) is significant and associates with inactivity and excessive daytime sleepiness but not with liver disease severity or insulin resistance. *Gut* 57(6): 807-813. Link: https://www.ncbi.nlm.nih.gov/pubmed/18270241

Newton JL, *et al.* (2010) The Newcastle NHS Chronic Fatigue Syndrome Service: not all fatigue is the same. *The Journal of the Royal College of Physicians of Edinburgh* 40(4): 304-307. Link: https://www.ncbi.nlm.nih.gov/pubmed/21132135

Nijs J and Ickmans K. (2013) Postural orthostatic tachycardia syndrome as a clinically important subgroup of chronic fatigue syndrome: further evidence for central nervous system dysfunctioning. *Journal of Internal Medicine* 273(5): 498-500. Link: https://www.ncbi.nlm.nih.gov/pubmed/23331489

Nojima N (2019) Paradox of diagnosis: the positive effects and limitations of diagnosis in myalgic encephalomyelitis/chronic fatigue syndrome (me/cfs) and fibromyalgia (fm) sufferers Osaka Human Sciences 5: 55-70. Link: https://tinyurl.com/y3yqn390

Nacul L et al. (2019) Evidence of Clinical Pathology Abnormalities in People with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) from an Analytic Cross-Sectional Study. *Diagnostics* 9 (2). Link: https://www.ncbi.nlm.nih.gov/pubmed/30974900

Palaniappan R and Sirimanna T. (2002) Peripheral vestibular dysfunction in chronic fatigue syndrome. *International Journal of Pediatric Otorhinolaryngology* 64(1): 69-72. Link: https://www.ncbi.nlm.nih.gov/pubmed/12020917

Penson A et al. (2020) Short fatigue questionnaire: Screening for severe fatigue. Journal of Psychosomatic Research 137. Link: https://www.sciencedirect.com/science/article/pii/S0022399920307911

Rasouli O et al. (2018) Lower regulatory frequency for postural control in patients with fibromyalgia and chronic fatigue syndrome. PLoS One 13 (4): e0195111. Link: https://www.ncbi.nlm.nih.gov/pubmed/29617424

Ravindran MK, *et al.* (2011) Migraine headaches in Chronic Fatigue Syndrome (CFS): Comparison of two prospective cross-sectional studies. *BMC Neurology* 11(1): 1-9. Link: https://www.ncbi.nlm.nih.gov/pubmed/21375763

Ravindran MK, et al. (2013) Dyspnea in Chronic Fatigue Syndrome (CFS): Comparison of Two Prospective Cross-Sectional Studies. *Global Journal of Health Science* 5(2): 94-110. Link:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4209305/

The ME Association Index of Published ME/CFS Research

Roerink ME, et al. (2017) Postural orthostatic tachycardia is not a useful diagnostic marker for chronic fatigue syndrome. *Journal of International Medicine* 281 (2): 179-188. Link:

https://www.ncbi.nlm.nih.gov/pubmed/27696568

Sandusky SB, et al. (2009) Fatigue: an overlooked determinant of physical function in scleroderma. *Rheumatology* 48(2): 165-169. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2638541/

Schutzer SE, *et al.* (2011) Distinct Cerebrospinal Fluid Proteomes Differentiate Post-Treatment Lyme Disease from Chronic Fatigue Syndrome. *PLoS ONE* 6(2): e17287. Link:

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0017287

Serrador JM, et al. (2018) Balance deficits in Chronic Fatigue Syndrome with and without fibromyalgia. *Neurorehabilitation* 42 (2): 235-246. Link: https://www.ncbi.nlm.nih.gov/pubmed/29562557

Shanks MF and Ho-Yen DO. (1995) A clinical study of chronic fatigue syndrome. The British Journal of Psychiatry 166(6): 798-801. Link: http://bjp.rcpsych.org/content/166/6/798

Sinaii N, *et al*. (2002) High rates of autoimmune and endocrine disorders, fibromyalgia, chronic fatigue syndrome and atopic diseases among women with endometriosis: a survey analysis. *Human Reproduction* 17(10): 2715-2724. Link: https://www.ncbi.nlm.nih.gov/pubmed/12351553

Sirois DA and Natelson B. (2001) Clinicopathological findings consistent with primary Sjögren's syndrome in a subset of patients diagnosed with chronic fatigue syndrome: preliminary observations. *The Journal of Rheumatology* 28(1): 126-131. Link: http://www.irheum.org/content/28/1/126

Son C (2019) Differential diagnosis between "chronic fatigue" and "chronic fatigue syndrome". *Integrative Medicine Research* 8 (2): 89-91. Link: https://www.sciencedirect.com/science/article/pii/S221342201930071X

Straus SE, et al. (1988) Allergy and the chronic fatigue syndrome. *Journal of Allergy and Clinical Immunology* 81(5): 791-795. Link: http://www.jacionline.org/article/0091-6749(88)90933-5/fulltext

Sunnquist M et al. (2019) The development of a short form of the DePaul Symptom Questionnaire. *Rehabilitation Psychology* [Epub ahead of print]. Link: https://tinyurl.com/yy3wswpw

Sweetman E et al. (2019) Current Research Provides Insight into the Biological Basis and Diagnostic Potential for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). *Diagnostics* 9 (3). Link:

https://www.ncbi.nlm.nih.gov/pubmed/31295930

Uhde M, et al. (2018) Markers of non-coeliac wheat sensitivity (NCWS) in patients with myalgic encephalomyelitis/chronic fatigue syndrome. *Gut Postscript Letter* 68 (2): 377-378. Link:

https://www.ncbi.nlm.nih.gov/pubmed/29550784

Van Den Houte M, et al. (2018) Perception of induced dyspnea in fibromyalgia and chronic fatigue syndrome. *Journal of Psychosomatic Research* 106: 49-55. Link: https://www.ncbi.nlm.nih.gov/pubmed/29455899

Woolley J, et al. (2004) Alcohol use in chronic fatigue syndrome. *Journal of Psychosomatic Research* 56(2): 203-206. Link: https://www.ncbi.nlm.nih.gov/pubmed/15016579

Wyller VB, *et al*. (2007) Abnormal thermoregulatory responses in adolescents with chronic fatigue syndrome: relation to clinical symptoms. *Pediatrics* 120: e129-e137. Link: https://www.ncbi.nlm.nih.gov/pubmed/17606539

Yamano E and Kataoka Y. (2018) New Diagnostic Biomarkers for Chronic Fatigue Syndrome. *Brain and Nerves* 70 (1): 27-34. Link: https://www.ncbi.nlm.nih.gov/pubmed/29348372 (Article in Japanese)

Yang T-Y, et al. (2015) Increased Risk of Chronic Fatigue Syndrome Following Atopy: A Population-based Study. *Medicine* 94(29): e1211. Link: https://www.ncbi.nlm.nih.gov/pubmed/26200644

Yang M et al. (2019) Psychometric properties of the PROMIS® Fatigue Short Form 7a among adults with myalgic encephalomyelitis/chronic fatigue syndrome. Quality of Life Research 28 (12): 3375-3384. Link: https://www.ncbi.nlm.nih.gov/pubmed/31506915

8.2 Investigations

Berkovitz S, et al. (2009) Serum 25-hydroxy vitamin D levels in chronic fatigue syndrome: a retrospective survey. *International Journal for Vitamin and Nutrition Research* 79(4): 250-254. Link: https://www.ncbi.nlm.nih.gov/pubmed/20209476

Campen CLMV et al. (2020) Reductions in Cerebral Blood Flow Can Be Provoked by Sitting in

severe Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients. *Healthcare (Basel)*. Link: https://pubmed.ncbi.nlm.nih.gov/33050553/

Chalmers RA, *et al.* (2006) CFSUM1 and CFSUM2 in urine from patients with chronic fatigue syndrome are methodological artefacts. *Clinica Chimica Acta* 364(1–2): 148-158. Link: https://www.ncbi.nlm.nih.gov/pubmed/16095585

Chia JK and Chia LY. (1999) Chronic Chlamydia Pneumoniae Infection: A Treatable Cause of Chronic Fatigue Syndrome. *Clinical Infectious Diseases* 29(2): 452-453. Link: https://academic.oup.com/cid/article/29/2/452/274438

Cleary KJ and White PD. (1993) Gilbert's and chronic fatigue syndromes in men, *Lancet* 341 (8848): 842. Link:

http://www.thelancet.com/journals/lancet/article/PII0140-6736(93)90629-U/abstract

Coucke F, et al. (2013) Morphological and functional abnormalities of the hypofyse in patients with diagnose of CFS or fibromyalgia [sic]. An example of misdiagnosis by Belgian chronic fatigue centres. *Endocrine Abstracts* 32: P222. Link: http://www.endocrine-abstracts.org/ea/0032/ea0032p222.htm

De Meirleir KL, et al. (2018) Evaluation of four clinical laboratory parameters for the diagnosis of myalgic encephalomyelitis, *Journal of Translational Medicine* 16 (1): 322. Link: https://www.ncbi.nlm.nih.gov/pubmed/30463572

Earl KE, et al. (2017) Vitamin D status in chronic fatigue syndrome/myalgic encephalomyelitis: a cohort study from the North-West of England. *BMJ Open* 7 (11): e015296. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5695299/

Esfandyarpour R et al. (2019) A nanoelectronics-blood-based diagnostic biomarker for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Proceedings of the National Academy of Science USA 116 (21): 10250-10257. Link: https://www.ncbi.nlm.nih.gov/pubmed/31036648

European Society of Cardiology. (2009) Guidelines for the diagnosis and management of syncope (version 2009): The task force for the Diagnosis and Management of Syncope of the European Society of Cardiology. *European Heart Journal* 30(21): 2631-2671. Link:

https://academic.oup.com/eurheartj/article/30/21/2631/2887508

Farmer A, et al. (1996) Screening for psychiatric morbidity in subjects presenting with chronic fatigue syndrome. *The British Journal of Psychiatry* 168(3): 354-358. Link: http://bip.rcpsych.org/content/168/3/354

Groven N et al. (2019) Patients with Fibromyalgia and Chronic Fatigue Syndrome show increased hsCRP compared to healthy controls. *Brain, Behaviour and Immunity* [Epub ahead of print] Link: https://www.sciencedirect.com/science/article/pii/S0889159119302089

The ME Association Index of Published ME/CFS Research

Hadjivassiliou M, et al. (2006) Neuropathy associated with gluten sensitivity. Journal of Neurology, Neurosurgery & Psychiatry 77(11): 1262-1266. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2077388/

Heap LC, *et al.* (1999) Vitamin B Status in Patients with Chronic Fatigue Syndrome. *Journal of the Royal Society of Medicine* 92(4): 183-185. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1297139/

Jacobson W, et al. (1993) Serum folate and chronic fatigue syndrome. Neurology 43(12): 2645. Link: https://www.ncbi.nlm.nih.gov/pubmed/8255470

Jones MG, *et al*. (2005a) Urinary and plasma organic acids and amino acids in chronic fatigue syndrome. *Clinica Chimica Acta* 361(1–2): 150-158. Link: https://www.ncbi.nlm.nih.gov/pubmed/15992788

Jones MG, *et al*. (2005b) Plasma and urinary carnitine and acylcarnitines in chronic fatigue syndrome. *Clinica Chimica Acta* 360(1–2): 173-177. Link: https://www.ncbi.nlm.nih.gov/pubmed/15967423

Keller BA, *et al.* (2014) Inability of myalgic encephalomyelitis/chronic fatigue syndrome patients to reproduce VO2peak indicates functional impairment. Journal of Translational Medicine 12: 104. Link: https://translational-medicine.biomedcentral.com/articles/10.1186/1479-5876-12-104

Krupp LB, *et al*. (1989) The fatigue severity scale: Application to patients with multiple sclerosis and systemic lupus erythematosus. *Archives of Neurology* 46(10): 1121-1123. Link: https://www.ncbi.nlm.nih.gov/pubmed/2803071

Lidbury B et al. (2019) Rethinking ME/CFS Diagnostic Reference Intervals via Machine Learning, and the Utility of Activin B for Defining Symptom Severity. *Diagnostics* 9 (3). Link: https://www.ncbi.nlm.nih.gov/pubmed/31331036

Miller NA, et al. (1991) Antibody to Coxsackie B virus in diagnosing postviral fatigue syndrome. BMJ 302(6769): 140-143. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1668819/

Missailidis D et al. (2020) Cell-Based Blood Biomarkers for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. International Journal of Molecular Science 21 (3). Link:

https://www.ncbi.nlm.nih.gov/pubmed/32046336

Sharma O.P. (1999) Fatigue and sarcoidosis. *European Respiratory Journal* 13(4): 713-714. Link: http://erj.ersjournals.com/content/13/4/713

Sheedy JR, et al. (2009) Increased D-Lactic Acid Intestinal Bacteria in Patients with Chronic Fatigue Syndrome. *in vivo* 23(4): 621-628. Link: https://www.ncbi.nlm.nih.gov/pubmed/19567398

Skowera A, et al. (2001) High prevalence of serum markers of coeliac disease in patients with chronic fatigue syndrome [Correspondence]. *Journal of Clinical Pathology* 54(4): 335-336. Link:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1731400/

Snell CR, *et al.* (2013) Discriminative Validity of Metabolic and Workload Measurements for Identifying People with Chronic Fatigue Syndrome. *Physical Therapy* 93(11): 1484-1492. Link:

https://www.ncbi.nlm.nih.gov/pubmed/23813081

Studd J and Panay N. (1996) Chronic fatigue syndrome [Letter to the editor]. *The Lancet* 348(9038): 1384. Link:

http://www.thelancet.com/journals/lancet/article/PIIS0140-6736(05)65448-7/fulltext

Taylor SE, *et al.* (2003) An organic cause of neuropsychiatric illness in adolescence. *The Lancet* 361 (9357): 572. Link: https://www.ncbi.nlm.nih.gov/pubmed/12598143

Togo F, et al. (2015) Attention network test: Assessment of cognitive function in chronic fatigue syndrome. *Journal of Neuropsychology* 9(1): 1-9. Link: https://www.ncbi.nlm.nih.gov/pubmed/24112872

Tomic S, et al. (2012) Lipid and protein oxidation in female patients with chronic fatigue syndrome. Archives of Medical Science 8(5): 886-891. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3506242/

VanNess JM, et al. (2003) Subclassifying Chronic Fatigue Syndrome through Exercise Testing. *Medicine & Science in Sports & Exercise* 35(6): 908-913. Link: https://www.ncbi.nlm.nih.gov/pubmed/12783037

8.3 Physical examination

Ash-Bernal R, et al. (1995) Vestibular Function Test Anomalies in Patients with Chronic Fatigue Syndrome. Acta Oto-Laryngologica 115(1): 9-17. Link: https://www.ncbi.nlm.nih.gov/pubmed/7762393

Campen CM, *et al.* (2018b) Low sensitivity of abbreviated tilt table testing for diagnosing postural tachycardia syndrome in adults with ME/CFS. *Frontiers in Paediatrics* [Epub ahead of print]. Link:

https://www.frontiersin.org/articles/10.3389/fped.2018.00349/abstract

The ME Association Index of Published ME/CFS Research

Eyskens J et al. (2019) Assessing chronic fatigue syndrome: Self-reported physical functioning and correlations with physical testing. *Journal of Bodywork and Movement Therapies* 23 (3): 598-603. Link:

https://www.sciencedirect.com/science/article/abs/pii/S1360859219301019

Hives L, et al. (2017) Can physical assessment techniques aid diagnosis in people with chronic fatigue syndrome/myalgic encephalomyelitis? A diagnostic accuracy study. *BMJ Open* 7 (11): e017521. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5695376/

Jammes Y et al. (2020) Maximal handgrip strength can predict maximal physical performance in patients with chronic fatigue. *Clinical Biomechanics* 73: 162-165. Link: https://www.clinbiomech.com/article/S0268-0033(19)30701-6/abstract

Nacul LC, *et al.* (2018) Hand grip strength as a clinical biomarker for ME/CFS and disease severity, *Frontiers in Neurology* 9. Link: https://www.frontiersin.org/articles/10.3389/fneur.2018.00992/full

Palaniappan R and Sirimanna T. (2002) Peripheral vestibular dysfunction in chronic fatigue syndrome. *International Journal of Pediatric Otorhinolaryngology* 64(1): 69-72. Link: https://www.ncbi.nlm.nih.gov/pubmed/12020917

Richardson AM et al. (2018) Weighting of orthostatic intolerance time measurements with standing difficulty score stratifies ME/CFS symptom severity and analyte detection. *Journal of Translational Medicine 16 (1):* 97. Link: https://www.ncbi.nlm.nih.gov/pubmed/29650052

Rowe PC, *et al.* (1999) Orthostatic intolerance and chronic fatigue syndrome associated with Ehlers-Danlos syndrome. *The Journal of Pediatrics* 135(4): 494-499. Link: https://www.ncbi.nlm.nih.gov/pubmed/10518084

Rowe PC, et al. (2014) Impaired Range of Motion of Limbs and Spine in Chronic Fatigue Syndrome. *The Journal of Pediatrics* 165(2): 360-366. Link: https://www.ncbi.nlm.nih.gov/pubmed/24929332

Rowe PC, et al. (2018) Two-Year Follow-Up of Impaired Range of Motion in Chronic Fatigue Syndrome. *Journal of Pediatrics* 200:249-253. Link: https://www.ncbi.nlm.nih.gov/pubmed/29866593

Rowe PC. (2014) Guest Blog: Dr Peter Rowe – Is the physical examination normal in CFS? Part 3. *Solve ME/CFS Initiative*. Link: http://solvecfs.org/guest-blog-dr-peter-rowe-is-the-physical-examination-normal-in-cfs-part-3/

8.4 Symptoms

Pain – see Biomedical Research, 4.21 above. Post-Exertional Malaise – see Biomedical Research, 4.23 above. Sleep disturbance – see Biomedical Research, 4.26 above. Vision – see Biomedical Research, 4.28 above.

9. Management

9.1 Cognitive Behavioural Therapy (CBT)

Adamson J et al. (2020) Cognitive behavioural therapy for chronic fatigue and chronic fatigue syndrome: outcomes from a specialist clinic in the UK. Journal of The Royal Society of Medicine [Epub ahead of print]. Link: https://journals.sagepub.com/doi/10.1177/0141076820951545

Ahmed SA et al. (2019) Assessment of the scientific rigour of randomized controlled trials on the effectiveness of cognitive behavioural therapy and graded exercise therapy for patients with myalgic encephalomyelitis/chronic fatigue syndrome: A systematic review. *Journal of Health Psychology* [Epub ahead of print] Link: https://www.ncbi.nlm.nih.gov/pubmed/31072121

Akagi H, et al. (2001) Cognitive behavioural therapy for chronic fatigue syndrome in a general hospital – feasible and effective. *General Hospital Psychiatry* 23(5): 254-260. Link:

http://www.sciencedirect.com/science/article/pii/S0163834301001542

Baos S, et al. (2018) Investigating the effectiveness and cost-effectiveness of FITNET-NHS (Fatigue In Teenagers on the interNET in the NHS) compared to Activity Management to treat paediatric chronic fatigue syndrome (CFS)/myalgic encephalomyelitis (ME): protocol for a randomised controlled trial. *Trials 19 (1): 136.* Link:

https://www.ncbi.nlm.nih.gov/pubmed/29471861

Braamse A et al. (2020) The role of partners' fatigue and the patient-partner relationship in the outcome of cognitive behavioural therapy for chronic fatigue syndrome. *Journal of Psychosomatic Research* 135:110133. Link: https://pubmed.ncbi.nlm.nih.gov/32450339/

Burgess M, et al. (2018) Home-based family focused rehabilitation for adolescents with severe Chronic Fatigue Syndrome. *Clinical Child Psychology and Psychiatry 24 (1): 19-28.* Link:

https://www.ncbi.nlm.nih.gov/pubmed/30114945

Chalder T et al. (2019) Persistent physical symptoms reduction intervention: a system change and evaluation in secondary care (PRINCE secondary) - a CBT-based transdiagnostic approach: study protocol for a randomised controlled trial. BMC Psychiatry 19 (1): 307. Link:

https://www.ncbi.nlm.nih.gov/pubmed/31640632

Deale A, et al. (1997) Cognitive behaviour therapy for chronic fatigue syndrome: a randomized controlled trial. American Journal of Psychiatry 154(3): 408-414. Link: https://www.ncbi.nlm.nih.gov/pubmed/9054791

Deale A, et al. (2001) Long-Term Outcome of Cognitive Behaviour Therapy Versus Relaxation Therapy for Chronic Fatigue Syndrome: A 5-Year Follow-Up Study. American Journal of Psychiatry 158(12): 2038-2042. Link: https://www.ncbi.nlm.nih.gov/pubmed/11729022

Friedberg F and Krupp LB. (1994) A Comparison of Cognitive Behavioural Treatment for Chronic Fatigue Syndrome and Primary Depression. *Clinical Infectious Diseases* 18(Supplement 1): \$105-\$110. Link: https://www.istor.org/stable/4457611?seq=1#page scan tab contents

Ghatineh S and Vink M. (2017) FITNET's Internet-Based Cognitive Behavioural Therapy Is Ineffective and May Impede Natural Recovery in Adolescents with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. A Review. Behavioural Science 7 (3). Link: https://www.ncbi.nlm.nih.gov/pubmed/28800089

Geraghty KJ and Blease C. (2017) Cognitive behavioural therapy in the treatment of chronic fatigue syndrome: A narrative review on efficacy and informed consent. *Journal of Health Psychology* 23 (1): 127-138. Link: https://www.ncbi.nlm.nih.gov/pubmed/27634687

Geraghty K and Adeniji C (2019) The 'Cognitive Behavioural Model' of Chronic Fatigue Syndrome: Critique of a Flawed Model *Health Psychology Open* [Epub ahead of print]. Link: https://tinyurl.com/y6x3g394

Hansen AL, et al. (2013) Heart Rate Variability and Fatigue in Patients with Chronic Fatigue Syndrome After a Comprehensive Cognitive Behaviour Group Therapy Program. *Journal of Psychophysiology* 27(2): 67-75. Link: http://psycnet.apa.org/record/2013-13709-003

Huibers MJH, et al. (2004) Efficacy of cognitive-behavioural therapy by general practitioners for unexplained fatigue among employees. *The British Journal of Psychiatry* 184(3): 240-246. Link: http://bjp.rcpsych.org/content/184/3/240

Janse A, et al. (2017) Long-term follow-up after cognitive behaviour therapy for chronic fatigue syndrome. *Journal of Psychosomatic Research* 97: 45-51. Link: https://www.ncbi.nlm.nih.gov/pubmed/28606498

The ME Association Index of Published ME/CFS Research

Janse A, et al. (2018) Efficacy of web-based cognitive-behavioural therapy for chronic fatigue syndrome: randomised controlled trial. *British Journal of Psychiatry* 212 (2): 112-118.

Link: https://www.ncbi.nlm.nih.gov/pubmed/29436329

Janse A et al. (2019) Prediction of long-term outcome after cognitive behavioural therapy for chronic fatigue syndrome. Journal of Pyschosomatic Research 121: 93-99. Link: https://www.ncbi.nlm.nih.gov/pubmed/31006534

Kindlon T. (2011) Reporting of harms associated with graded exercise therapy and cognitive behaviour therapy in myalgic encephalomyelitis/chronic fatigue syndrome. *Bulletin of IACFS/ME* 19(2): 59-111. Link:

http://iacfsme.org/PDFS/Reporting-of-Harms-Associated-with-GET-and-CBT-in.aspx

Laws KR. (2017) Distress signals: Does cognitive behavioural therapy reduce or increase distress in chronic fatigue syndrome/myalgic encephalomyelitis? Journal of Health Psychology 22 (9): 1177-1180. Link: https://www.ncbi.nlm.nih.gov/pubmed/28805513

Malik S et al. (2020) Cognitive—behavioural therapy combined with music therapy for chronic fatigue following Epstein-Barr virus infection in adolescents: a feasibility study. BMJ Paediatrics Open 4 (1). Link: https://bmjpaedsopen.bmj.com/content/4/1/e000620.abstract

Malouff JM, et al. (2008) Efficacy of cognitive behavioural therapy for chronic fatigue syndrome: A meta-analysis. *Clinical Psychology Review* 28(5): 736-745. Link: https://www.ncbi.nlm.nih.gov/pubmed/18060672

McPhee G. (2017) Cognitive behaviour therapy and objective assessments in chronic fatigue syndrome. *Journal of Health Psychology* 22 (9): 1181-1186. Link: https://www.ncbi.nlm.nih.gov/pubmed/28805529

Mengshoel AM et al. (2020) Patients' experiences and effects of non-pharmacological treatment for myalgic encephalomyelitis/chronic fatigue syndrome – a scoping mixed methods review. *International Journal of Qualitative Studies on Health and Wellbeing* 15 (01). Link: https://www.tandfonline.com/doi/full/10.1080/17482631.2020.1764830

O'Dowd H, et al. (2006) Cognitive behavioural therapy in chronic fatigue syndrome: a randomised controlled trial of an outpatient group programme. Health Technology Assessment 10(37). Link: https://www.ncbi.nlm.nih.gov/pubmed/17014748

O'Dowd H et al. (2020) The feasibility and acceptability of an early intervention in primary care to prevent chronic fatigue syndrome (CFS) in adults: randomised controlled trial. *Pilot and Feasibility Studies* 6. Link: https://pilotfeasibilitystudies.biomedcentral.com/articles/10.1186/s40814-020-00595-0

O'Dowd B and Griffith G (2020) "I Need to Start Listening to What my Body Is Telling Me.": Does Mindfulness-Based Cognitive Therapy Help People with Chronic Fatigue Syndrome? *Human Arenas* [Epub ahead of print]. Link: https://link.springer.com/article/10.1007/s42087-020-00123-9

Prins JB, *et al*. (2001) Cognitive behaviour therapy for chronic fatigue syndrome: a multicentre randomised controlled trial. *The Lancet* 357(9259): 841-847. Link: https://www.ncbi.nlm.nih.gov/pubmed/11265953

Picariello F, et al. (2017) 'It feels sometimes like my house has burnt down, but I can see the sky': A qualitative study exploring patients' views of cognitive behavioural therapy for chronic fatigue syndrome. *British Journal of Health Psychology* 22 (3): 383-413. Link: https://www.ncbi.nlm.nih.gov/pubmed/28349621

Ridsdale L, et al. (2001) Chronic fatigue in general practice: is counselling as good as cognitive behaviour therapy? A UK randomised trial. *British Journal of General Practice* 51 (462): 19-24. Link: https://www.ncbi.nlm.nih.gov/pubmed/11271868

Sharpe M, et al. (1996) Cognitive behaviour therapy for the chronic fatigue syndrome: a randomised controlled trial. *BMJ* 312(7022): 22-26. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2349693/

Stubhaug B, et al. (2018) A 4-Day Mindfulness-Based Cognitive Behavioral Intervention Program for CFS/ME. An Open Study, With 1-Year Follow-Up. *Frontiers in Psychiatry* 9: 720. Link: https://www.frontiersin.org/articles/10.3389/fpsyt.2018.00720/full

Stulemeijer M, et al. (2005) Cognitive behaviour therapy for adolescents with chronic fatigue syndrome: randomised controlled trial. *BMJ* 330(7481): 14. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC539840/

Sunnquist M and Jason LA (2018) A re-examination of the cognitive behavioral model of chronic fatigue syndrome. *Journal of Clinical Psychology* [Epub ahead of print]. Link: https://www.ncbi.nlm.nih.gov/pubmed/29457646

Twisk F and Corsius L (2018) Cognitive-behavioural therapy for chronic fatigue syndrome: neither efficacious nor safe. *British Journal of Psychiatry* 213 (2): 500-501. Link: https://www.ncbi.nlm.nih.gov/pubmed/30027882

Twisk FNM (2019) Cognitive-behavioural and graded exercise therapies for chronic fatigue (syndrome) are associated with lower levels of work/school attendance. *Journal of Behavioural Medicine* 42 (3): 576-577. Link: https://www.ncbi.nlm.nih.gov/pubmed/30924061

Van der Vaart R et al. (2019) Implementing guided ICBT for chronic pain and fatigue: A qualitative evaluation among therapists and managers. *Internet Interventions* 18. Link:

https://www.sciencedirect.com/science/article/pii/S2214782919300910

Vink M and Vink-Niese A (2019) Cognitive behavioural therapy for myalgic encephalomyelitis/chronic fatigue syndrome is not effective. Re-analysis of a Cochrane review. *Health Psychology Open 6* (1). Link: https://www.ncbi.nlm.nih.gov/pubmed/31080632

Worm-Smeitink M et al. (2019) Internet-Based Cognitive Behavioral Therapy in Stepped Care for Chronic Fatigue Syndrome: Randomized Noninferiority Trial. *Journal of Medical Internet Research* 21 (3). Link: https://www.ncbi.nlm.nih.gov/pubmed/30869642

Worm-Smeitink M et al. (2019) Internet-Based Cognitive Behavioral Therapy for Chronic Fatigue Syndrome Integrated in Routine Clinical Care: Implementation Study. *Journal of Medical Internet Research* 21 (10). Link: https://www.ncbi.nlm.nih.gov/pubmed/31603428

9.2 Complementary and alternative therapies

Alraek T, et al. (2011) Complementary and alternative medicine for patients with chronic fatigue syndrome: A systematic review. *BMC Complementary and Alternative Medicine* 11: 87. Link:

https://www.ncbi.nlm.nih.gov/pubmed/21982120

Arring NM et al. (2018) Ginseng as a Treatment for Fatigue: A Systematic Review. *Journal of Alternative and Complimentary Medicine* [Epub ahead of print]. Link: https://www.ncbi.nlm.nih.gov/pubmed/29624410

Campen C et al. (2018) The Effect of Curcumin on Patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis: An Open Label Study. *Scientific Research 9 (5) 356-366*. Link:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=84389&#abstract

Chan JSM, et al. (2017) Adiponectin Potentially Contributes to the Antidepressive Effects of Baduanjin Qigong Exercise in Women with Chronic Fatigue Syndrome-Like Illness. *Cellular Transplant* 26 (3): 493-501. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5657703/

The ME Association Index of Published ME/CFS Research

Chi A, et al. (2017) Characterization of a protein-bound polysaccharide from Herba Epimedii and its metabolic mechanism in chronic fatigue syndrome. Journal of Ethnopharmocology 203: 241-251. Link: https://www.ncbi.nlm.nih.gov/pubmed/28359851

Groven KS and Dahl-Michelsen T (2019) Recovering from chronic fatigue syndrome as an intra-active process. *Health Care Women International* 12: 1-12. Link: https://www.ncbi.nlm.nih.gov/pubmed/31513470

Lin W et al. (2019) Jin's three-needle acupuncture technique for chronic fatigue syndrome: a study protocol for a multicentre, randomized, controlled trial. *Trials* 20 (1): 155. Link: https://www.ncbi.nlm.nih.gov/pubmed/30832713

Mahjoub F, et al. (2017) Are Traditional Remedies Useful in Management of Fibromyalgia and Chronic Fatigue Syndrome? A Review Study. *Journal of Evidence Based Complementary and Alternative Medicine* 22 (4): 1011-1016. Link: https://www.ncbi.nlm.nih.gov/pubmed/28597692

Munemoto T, et al. (2017) Increase in the Regional Cerebral Blood Flow following Waon Therapy in Patients with Chronic Fatigue Syndrome: A Pilot Study. *International Medicine* 56 (14): 1817-1824. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5548673/

Nipate SS and Tiwari AH (2018) Antioxidant and immunomodulatory properties of Spilanthes oleracea with potential effect in chronic fatigue syndrome infirmity, *Journal of Ayurveda and Integrative Medicine* [Epub ahead of print]. Link: https://www.ncbi.nlm.nih.gov/pubmed/30455072

Numata T et al. (2019) Successful Treatment of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome with Chronic Febricula Using the Traditional Japanese Medicine Shosaikoto. *International Medicine* 59 (2): 297-300. Link: https://www.ncbi.nlm.nih.gov/pubmed/31534083

Vittorio S et al. (2020) Comparison between Acupuncture and Nutraceutical Treatment with Migratens® in Patients with Fibromyalgia Syndrome: A Prospective Randomized Clinical Trial. *Nutrients* 12 (3). Link: https://www.ncbi.nlm.nih.gov/pubmed/32204554

Wang T, et al. (2017) Acupuncture and moxibustion for chronic fatigue syndrome in traditional Chinese medicine: a systematic review and meta-analysis. *BMC Complementary and Alternative Medicine* 17:163. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5363012/

Weatherley-Jones E, et al. (2004) A randomised, controlled, triple-blind trial of the efficacy of homeopathic treatment for chronic fatigue syndrome. *Journal of Psychosomatic Research* 56(2): 189-197. Link: https://www.ncbi.nlm.nih.gov/pubmed/15016577

Xu Y et al. (2019) Acupuncture in the treatment of chronic fatigue syndrome based on "interaction of brain and kidney" in TCM: a randomized controlled trial. *Zhongguo Zhen Jiu* 39 (2): 123-7. Link: https://tinyurl.com/yyzywhd7

Xu Y et al. (2019) Clinical research of auricular gold-needle therapy in treatment of chronic fatigue syndrome of qi deficiency constitution. *Zhongguo Zhen Jiu* 39 (20): 128-132. Link: https://tinyurl.com/yxwy7xqn

Yang G et al. (2019) Is the efficacy of repetitive transcranial magnetic stimulation influenced by baseline severity of fatigue symptom in patients with myalgic encephalomyelitis.

International Journal of Neuroscience 130 (1): 64-70. Link: https://www.ncbi.nlm.nih.gov/pubmed/31483181

Yin Z et al. (2020) Acupuncture for Chronic Fatigue Syndrome: An Overview of Systematic Reviews. *Chinese Journal of Integrative Medicine* [Epub ahead of print]. Link: https://link.springer.com/article/10.1007/s11655-020-3195-3#citeas

Zhang Q et al. (2019) Acupuncture for chronic fatigue syndrome: a systematic review and meta-analysis. Acupuncture in Medicine 37 (4): 211-222. Link: https://www.ncbi.nlm.nih.gov/pubmed/31204859

9.3 Diet and nutrition

Behan PO, *et al*. (1990) Effect of high doses of essential fatty acids on the postviral fatigue syndrome. Acta Neurologica Scandinavica 82(3): 209-216. Link: https://www.ncbi.nlm.nih.gov/pubmed/2270749

Bjorklund G, et al. (2018) Chronic fatigue syndrome (CFS): Suggestions for a nutritional treatment in the therapeutic approach, *Biomedicine and Pharmacotherapy* 109: 1000-1007. Link: https://tinyurl.com/y6cnaxpd

Campagnolo, *et al.* (2017) Dietary and nutrition interventions for the therapeutic treatment of chronic fatigue syndrome/myalgic encephalomyelitis: a systematic review. *Journal of Human Nutrition and Diet* 30 (3): 247-259. Link: https://www.ncbi.nlm.nih.gov/pubmed/28111818

Castro-Marrero J, et al. (2018) Low omega-3 index and polyunsaturated fatty acid status in patients with chronic fatigue syndrome/myalgic encephalomyelitis, *Prostaglandins Leukotrienes and Essential Fatty Acids* 139, 20-24. Link: https://www.ncbi.nlm.nih.gov/pubmed/30471769

Cossington J et al. (2020) Potential benefits of a ketogenic diet to improve response and recovery from physical exertion in people with Myalgic encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): A feasibility study. *International Journal of Sport, Exercise and Health Research* 3 (2): 33-39. Link: http://www.sportscienceresearch.com/IJSEHR_201932_02.pdf

Heap LC, et al. (1999) Vitamin B Status in Patients with Chronic Fatigue Syndrome. Journal of the Royal Society of Medicine 92(4): 183-185. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1297139/

Hobday RA, *et al*. (2008) Dietary intervention in chronic fatigue syndrome. Journal of Human Nutrition and Dietetics 21(2): 141-149. Link: http://onlinelibrary.wiley.com/doi/10.1111/j.1365-277X.2008.00857.x/abstract

Jacobson W, et al. (1993) Serum folate and chronic fatigue syndrome. Neurology 43(12): 2645. Link: https://www.ncbi.nlm.nih.gov/pubmed/8255470

Jones K and Probst Y. (2017) Role of dietary modification in alleviating chronic fatigue syndrome symptoms: a systematic review. Australian and New Zealand Journal of Public Health 41 (4): 338-344. Link: https://www.ncbi.nlm.nih.gov/pubmed/28616881

Joustra ML, *et al.* (2017) Vitamin and mineral status in chronic fatigue syndrome and fibromyalgia syndrome: A systematic review and meta-analysis. *PLoS One* 12 (4): e0176631. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5409455/

Shao et al. (2019) Therapeutic Effect and Metabolic Mechanism of A Selenium-Polysaccharide from Ziyang Green Tea on Chronic Fatigue Syndrome. *Polymers* 10 (11). Link: https://tinyurl.com/y4ckfpfu

Venturini L et al. (2019) Modification of Immunological Parameters, Oxidative Stress Markers, Mood Symptoms, and Well-Being Status in CFS Patients after Probiotic Intake: Observations from a Pilot Study. *Oxidative Medicine and Cellular Longevity 2019*. Link:

https://www.hindawi.com/journals/omcl/2019/1684198/

Warren G, et al. (1999) The role of essential fatty acids in chronic fatigue syndrome: A case-controlled study of red-cell membrane essential fatty acids (EFA) and a placebo-controlled treatment study with high dose of EFA. Acta Neurologica Scandinavica 99(2): 112-116. Link: https://www.ncbi.nlm.nih.gov/pubmed/10071170

9.4 Exercise, Pacing and activity management

Abonie US, et al. (2018) Effects of activity pacing in patients with chronic conditions associated with fatigue complaints: a meta-analysis, *Disability and Rehabilitation*. Link:

https://www.tandfonline.com/doi/abs/10.1080/09638288.2018.1504994

Antcliff D et al. (2019) Survey of activity pacing across healthcare professionals informs a new activity pacing framework for chronic pain/fatigue. *Musculoskeletal Care* 1–11. Link: https://onlinelibrary.wiley.com/doi/10.1002/msc.1421

Ballantine R, et al. (2019) Gravity-induced exercise intervention in an individual with chronic fatigue syndrome/myalgic encephalomyelitis and postural tachycardia syndrome: a case report. *International Journal of Therapy and Rehabilitation* 26 (5). Link:

https://www.magonlinelibrary.com/doi/abs/10.12968/ijtr.2016.0035

Bazelmans E, *et al.* (2001) Is physical deconditioning a perpetuating factor in chronic fatigue syndrome? A controlled study on maximal exercise performance and relations with fatigue, impairment and physical activity. *Psychological Medicine* 31(1): 107-114. Link: https://www.ncbi.nlm.nih.gov/pubmed/11200949

Black CD, *et al*. (2005) Increased daily physical activity and fatigue symptoms in chronic fatigue syndrome. *Dynamic Medicine* 4(1): 3. Link: https://link.springer.com/article/10.1186/1476-5918-4-3

Broadbent S et al. (2020) Patient experiences and the psychosocial benefits of group aquatic exercise to reduce symptoms of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: a pilot study. *Fatigue: Biomedicine, Health and Behaviour* [Epub ahead of print]. Link: https://www.tandfonline.com/doi/abs/10.1080/21641846.2020.1751455?journalCode=rftg208

Brigden A et al. (2019) Results of the feasibility phase of the managed activity graded exercise in teenagers and pre-adolescents (MAGENTA) randomised controlled trial of treatments for chronic fatigue syndrome/myalgic encephalomyelitis. *Pilot and Feasibility Studies* 5: 151. Link: https://pilotfeasibilitystudies.biomedcentral.com/articles/10.1186/s40814-019-0525-3

Broadbent S, et al. (2018) Effects of a short-term aquatic exercise intervention on symptoms and exercise capacity in individuals with chronic fatigue syndrome/myalgic encephalomyelitis: a pilot study. European Journal of Applied physiology [Epub ahead of print]. Link: https://www.ncbi.nlm.nih.gov/pubmed/29923110

Cheshire A, et al. (2018) Guided graded Exercise Self-help for chronic fatigue syndrome: patient experiences and perceptions, *Disability Rehabilitation* [Epub ahead of print] Link: https://www.ncbi.nlm.nih.gov/pubmed/30325677

Clark LV, et al. (2017) Guided graded exercise self-help plus specialist medical care versus specialist medical care alone for chronic fatigue syndrome (GETSET): a pragmatic randomised controlled trial. Lancet 390 (10092): 363-373. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5522576/

Clauw DJ. (2017) Guided graded exercise self-help as a treatment of fatigue in chronic fatigue syndrome. *Lancet* 390 (10092): 335-336. Link: https://www.ncbi.nlm.nih.gov/pubmed/28648401

Dannaway J, et al. (2017) Exercise therapy is a beneficial intervention for chronic fatigue syndrome (PEDro synthesis). *British Journal of Sports Medicine*. Link: https://www.ncbi.nlm.nih.gov/pubmed/28982730

Eik H, et al. (2020) Rebuilding a tolerable life: narratives of women recovered from fibromyalgia. *Physiotherapy Theory and Practice*. Link: https://www.tandfonline.com/doi/abs/10.1080/09593985.2020.1830454?journal Code=iptp20

Espejo JA, *et al.* (2018) Unraveling the Molecular Determinants of Manual Therapy: An Approach to Integrative Therapeutics for the Treatment of Fibromyalgia and Chronic Fatigue Syndrome/Myalgic Encephalomyelitis. *International Journal of Molecular Science* 19 (9). Link: https://www.ncbi.nlm.nih.gov/pubmed/30205597

Farragher JF et al. (2020) Energy management education and occupation-related outcomes in adults with chronic diseases: A scoping review. British Journal of Occupational Therapy [Epub ahead of print]. Link: https://journals.sagepub.com/doi/abs/10.1177/0308022620904327?journalCode bjod&#articleCitationDownloadContainer

Ferrar KE, et al. (2017) Pacing, Conventional Physical Activity and Active Video Games to Increase Physical Activity for Adults with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Protocol for a Pilot Randomized Controlled Trial. *JMIR Research Protocols* 6 (8): e117. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5558045/

Fulcher KY and White PD. (1997) Randomised controlled trial of graded exercise in patients with the chronic fatigue syndrome. *BMJ* 314(7095): 1647. Correspondence: see *BMJ* 1997, 315: 947. Link: https://www.ncbi.nlm.nih.gov/pubmed/9180065

Geraghty K, et al. (2019) Myalgic encephalomyelitis/chronic fatigue syndrome patients' reports of symptom changes following cognitive behavioural therapy, graded exercise therapy and pacing treatments: Analysis of a primary survey compared with secondary surveys. *Journal of Health Psychology* 24 (10): 1318-1333 Link:

https://www.ncbi.nlm.nih.gov/pubmed/28847166

Geraghty K and Blease C. (2018) Myalgic encephalomyelitis/chronic fatigue syndrome and the biopsychosocial model: a review of patient harm and distress in the medical encounter. *Disability and Rehabilitation 21: 1-10.* Link: https://www.ncbi.nlm.nih.gov/pubmed/29929450

Goudsmit EM, *et al*. (2012) Pacing as a strategy to improve energy management in myalgic encephalomyelitis/chronic fatigue syndrome: a consensus document. *Disability and Rehabilitation* 34(13): 1140-1147. Link: https://www.ncbi.nlm.nih.gov/pubmed/22181560

Kindlon T and Goudsmit EM. (2010) Graded exercise for chronic fatigue syndrome: too soon to dismiss reports of adverse reactions [Letter to the editor]. *Journal of Rehabilitation Medicine* 42(2): 184. Link: https://www.ncbi.nlm.nih.gov/pubmed/20140417

Kindlon T. (2017) Do graded activity therapies cause harm in chronic fatigue syndrome? *Journal of Health Psychology* 22 (9): 1146-1154. Link: https://www.ncbi.nlm.nih.gov/pubmed/28805516

King E et al. (2020) Patterns of daytime physical activity in patients with chronic fatigue syndrome. *Journal of Psychosomatic Research* [Epub ahead of print]. Link:

https://www.sciencedirect.com/science/article/abs/pii/S0022399919310323

Kos D, et al. (2015) Activity Pacing Self-Management in Chronic Fatigue Syndrome: A Randomized Controlled Trial. *American Journal of Occupational Therapy* 69(5). Link: https://www.ncbi.nlm.nih.gov/pubmed/26356665

Kujawski S et al. (2020) Prediction of Discontinuation of Structured Exercise Programme in Chronic Fatigue Syndrome Patients. Journal of Clinical Medicine Link: https://pubmed.ncbi.nlm.nih.gov/33114704/

Lapp CW. (1997) Exercise limits in chronic fatigue syndrome [Letter to the editor]. The American Journal of Medicine 103(1): 83. Link: https://www.ncbi.nlm.nih.gov/pubmed/9236491

Larun L, et al. (2017) Exercise therapy for chronic fatigue syndrome. Cochrane Database of Systematic Reviews 4. Link: https://www.ncbi.nlm.nih.gov/pubmed/28444695

Macnamara C, et al. (2018) Personalised relaxation practice to improve sleep and functioning in patients with chronic fatigue syndrome and depression: study protocol for a randomised controlled trial. *Trials 19 (1): 371*. Link: https://www.ncbi.nlm.nih.gov/pubmed/29996933

Moss-Morris R, et al. (2005) A Randomized Controlled Graded Exercise Trial for Chronic Fatigue Syndrome: Outcomes and Mechanisms of Change. *Journal of Health Psychology* 10(2): 245-259. Link: https://www.ncbi.nlm.nih.gov/pubmed/15723894

Oka T, et al. (2017) Development of a recumbent isometric yoga program for patients with severe chronic fatigue syndrome/myalgic encephalomyelitis: A pilot study to assess feasibility and efficacy. *Biopsychosocial Medicine* 11: 5. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5335724/

Oka T et al. (2018) Changes in fatigue, autonomic functions, and blood biomarkers due to sitting isometric yoga in patients with chronic fatigue syndrome. Biopsychosocial Medicine 12: 3. Link: https://www.ncbi.nlm.nih.gov/pubmed/29643935

Oka T et al. (2019) The longitudinal effects of seated isometric yoga on blood biomarkers, autonomic functions, and psychological parameters of patients with chronic fatigue syndrome: a pilot study. *BioPsychoSocial Medicine 13* (28). Link: https://bpsmedicine.biomedcentral.com/articles/10.1186/s13030-019-0168-
https://bpsmedicine.biomedcentral.com/articles/10.1186/s13030-019-0168-

Powell P, et al. (2001) Randomised controlled trial of patient education to encourage graded exercise in chronic fatigue syndrome. *BMJ* 322: 387. Link: https://www.ncbi.nlm.nih.gov/pubmed/11179154

Shepherd C. (2001) Pacing and Exercise in Chronic Fatigue Syndrome. *Physiotherapy* 87(8): 395-396. Link: http://www.sciencedirect.com/science/article/pii/S0031940605654570

Thompson DP, *et al.* (2017) Symptoms of chronic fatigue syndrome/myalgic encephalopathy are not determined by activity pacing when measured by the chronic pain coping inventory. *Physiotherapy*. Link: https://www.ncbi.nlm.nih.gov/pubmed/28843450

Takakura S et al. (2019) Changes in circulating microRNA after recumbent isometric yoga practice by patients with myalgic encephalomyelitis/chronic fatigue syndrome: an explorative pilot study. *Biopsychosocial Medicine* 13: 29. Link: https://www.ncbi.nlm.nih.gov/pubmed/31827600

Van Campen CL et al. (2020) Heart Rate Thresholds to Limit Activity in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients (Pacing): Comparison of Heart Rate Formulae and Measurements of the Heart Rate at the Lactic Acidosis Threshold during Cardiopulmonary Exercise Testing. Advances in Physical Education 10 (2). Link:

https://www.scirp.org/journal/paperinformation.aspx?paperid=100333

Vink M and Vink-Niese A (2020) Graded exercise therapy doesn't restore the ability to work in ME/CFS. Rethinking of a Cochrane review. *Work* [Epub ahead of print]. Link: https://content.iospress.com/articles/work/wor203174

Vink M and Vink-Niese A (2018) Multidisciplinary rehabilitation treatment is not effective for myalgic encephalomyelitis/chronic fatigue syndrome: A review of the FatiGo trial. *Health Psychology Open 5* (2): 2055102918792648. Link: https://www.ncbi.nlm.nih.gov/pubmed/30094055

Vink M and Vink-Niese A (2018) Graded exercise therapy for myalgic encephalomyelitis/chronic fatigue syndrome is not effective and unsafe. Reanalysis of a Cochrane review, *Health Psychology Open 5* (2). Link: https://www.ncbi.nlm.nih.gov/pubmed/30305916

Wallman KE, et al. (2004) Randomised controlled trial of graded exercise in chronic fatigue syndrome. *Medical Journal of Australia* 180(9): 444. Link: https://www.ncbi.nlm.nih.gov/pubmed/15115421

Zalewski P et al. (2019) The Impact of a Structured Exercise Programme upon Cognitive Function in Chronic Fatigue Syndrome Patients. *Brain Science* 10 (1): 4. Link: https://www.mdpi.com/2076-3425/10/1/4

9.5 General management

Ali S, et al. (2017) Guided Self-Help for Patients with Chronic Fatigue Syndrome Prior to Starting Cognitive Behavioural Therapy: a Cohort Study. *Behavioural and Cognitive Psychotherapy* 45 (5): 448-466. Link: https://www.ncbi.nlm.nih.gov/pubmed/28473005

Arnett SV and Clark IA. (2012) Inflammatory fatigue and sickness behaviour – Lessons for the diagnosis and management of chronic fatigue syndrome. Journal of Affective Disorders 141 (2–3): 130-142. Link: http://www.jad-journal.com/article/S0165-0327(12)00235-2/abstract

BACME. (2015) British Association for CFS/ME: Therapy and Symptom Management in CFS/ME. Link: https://www.bacme.info/

Castro-Marrero J, et al. (2017) Treatment and management of chronic fatigue syndrome/myalgic encephalomyelitis: all roads lead to Rome. *British Journal of Pharmacology* 174 (5): 345-369. Link:

https://www.ncbi.nlm.nih.gov/pubmed/28052319

Catchpole S and Garip G (2019) Acceptance and identity change: An interpretative phenomenological analysis of carers' experiences in myalgic encephalopathy/chronic fatigue syndrome. *Journal of Health Psychology*. Link: https://tinyurl.com/y3fpxwht

Chu L et al. (2020) Environmental accommodations for university students affected by myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Work [Epub ahead of Print]. Link: https://content.iospress.com/articles/work/wor203176

Collin SM, *et al.* (2018) Chronic fatigue syndrome (CFS/ME) symptom-based phenotypes and 1-year treatment outcomes in two clinical cohorts of adult patients in the UK and The Netherlands. *Journal of Psychosomatic Research* 104: 29-34. Link: https://www.ncbi.nlm.nih.gov/pubmed/29275782

Collin SM. and Crawley E. (2017) Specialist treatment of chronic fatigue syndrome/ME: a cohort study among adult patients in England. *MBC Health Services Research* 17:488. Link:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5513420/

Crawley EM, et al. (2017) Clinical and cost-effectiveness of the Lightning Process in addition to specialist medical care for paediatric chronic fatigue syndrome: randomised controlled trial. *Archives of Disease in Childhood,* 103 (2): 155-164. Link: https://www.ncbi.nlm.nih.gov/pubmed/28931531

Daniels J and Loades ME. (2017) A Novel Approach to Treating CFS and Comorbid Health Anxiety: A Case Study. *Clinical Psychology and Psychotherapy* 24 (3): 727-736. Link: https://www.ncbi.nlm.nih.gov/pubmed/27714891

Deale A, et al. (1998) Illness beliefs and treatment outcome in chronic fatigue syndrome. *Journal of Psychosomatic Research* 45(1): 77-83. Link: https://www.ncbi.nlm.nih.gov/pubmed/9720857

Devendorf AR, et al. (2017) Approaching recovery from myalgic encephalomyelitis and chronic fatigue syndrome: Challenges to consider in research and practice. *Journal of Health Psychology* 1:1359105317742195. Link: https://www.ncbi.nlm.nih.gov/pubmed/29182007

Green CR, et al. (2015) National Institutes of Health Pathways to Prevention Workshop: Advancing the Research on Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Annals of Internal Medicine 162(12): 860-865. Link: https://www.ncbi.nlm.nih.gov/pubmed/26075757

Jonsjo MA et al. (2019) Acceptance & Commitment Therapy for ME/CFS (Chronic Fatigue Syndrome) – A feasibility study. Journal of Contextual Behaviour Science [Epub ahead of print]. Link: https://www.sciencedirect.com/science/article/pii/S2212144718301959

Kraaj V, et al. (2017) Cognitive and behavioral coping in people with Chronic fatigue syndrome: An exploratory study searching for intervention targets for depressive symptoms. *Journal of Health Psychology* 1: 1359105317707259. Link: https://www.ncbi.nlm.nih.gov/pubmed/28810458

Kuratsune H. (2018) Diagnosis and Treatment of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. *Brain and Nerves* 70 (1): 11-18. Link: https://www.ncbi.nlm.nih.gov/pubmed/29348370 (Article in Japanese)

LI SH, et al. (2017) Randomised controlled trial of online continuing education for health professionals to improve the management of chronic fatigue syndrome: a study protocol. *BMJ Open.* 7 (5): e014133. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5541332/

McBride RL, et al. (2017) Cognitive remediation training improves performance in patients with chronic fatigue syndrome. *Psychiatry Research* 257:400-405. Link: https://www.ncbi.nlm.nih.gov/pubmed/28830024

McCrone P, et al. (2012) Adaptive Pacing, Cognitive Behaviour Therapy, Graded Exercise, and Specialist Medical Care for Chronic Fatigue Syndrome: A Cost-Effectiveness Analysis. *PLoS ONE 7(8)*: e40808. Link: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0040808

McPhee G et al. (2019) Monitoring treatment harm in myalgic encephalomyelitis/chronic fatigue syndrome: A freedom-of-information study of National Health Service specialist centres in England. *Journal of Health Psychology* [Epub ahead of print]. Link: https://www.ncbi.nlm.nih.gov/pubmed/31234662

The ME Association Index of Published ME/CFS Research

ME Association, The (2010) Managing my M.E.: What people with ME/CFS and their carers want from the UK's health and social services. *Gawcott: The ME Association*. Link: http://www.meassociation.org.uk/wp-content/uploads/2010/09/2010-survey-report-lo-res10.pdf

ME Association, The (2015) 'No decisions about me without me': ME/CFS Illness Management Survey Results Part 1. Gawcott: The ME Association. Link: https://tinyurl.com/y24dv3s8

National Institute for Health and Care Excellence. (2007) Chronic fatigue syndrome/myalgic encephalomyelitis (or encephalopathy): diagnosis and management. *NICE guideline [CG53]*. Link: https://www.nice.org.uk/guidance/cg53

National Institute for Health and Care Excellence. (2012) Headaches in over 12s: diagnosis and management. NICE guidelines [CG150]. Link: https://www.nice.org.uk/guidance/cg150

National Institute for Health and Care Excellence. (2013) Neuropathic pain in adults: pharmacological management in non-specialist settings. *NICE guidelines* [CG173]. Link: https://www.nice.org.uk/guidance/cg173

NHS Scotland. (2010) Scottish Good Practice Statement on ME-CFS. *Edinburgh: The Scottish Government*. Link: http://www.scot.nhs.uk/scottish-good-practice-statement-on-me-cfs/

Russell C, et al. (2017) Do evidence-based interventions for chronic fatigue syndrome improve sleep? A systematic review and narrative synthesis. *Sleep Medicine Review* 33: 101-110. Link: https://www.ncbi.nlm.nih.gov/pubmed/27524207

Ryckeghem H, et al. (2017) Exploring the potential role of the advanced nurse practitioner within a care path for patients with chronic fatigue syndrome. Journal of Advanced Nursing 73 (7): 1610-1619. Link: https://www.ncbi.nlm.nih.gov/pubmed/28000331

Schmaling KB, et al. (2005) A longitudinal study of physical activity and body mass index among persons with unexplained chronic fatigue. *Journal of Psychosomatic Research* 58(4): 375-381. Link: http://www.sciencedirect.com/science/article/pii/S0022399904006415

Sharpe M and Greco M (2019) Chronic fatigue syndrome and an illness-focused approach to care: controversy, morality and paradox. *Medical Humanities* [Epub ahead of print] Link: https://www.ncbi.nlm.nih.gov/pubmed/31213482

Sirois FM and Hirsch JK (2019) Self-compassion and Adherence in Five Medical Samples: the Role of Stress. *Mindfulness* 10 (1): 46-54. Link: https://tinyurl.com/yxh226vf

Smith MEB, *et al.* (2015) Treatment of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Systematic Review for a National Institutes of Health Pathways to Prevention Workshop Treatment of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. *Annals of Internal Medicine* 162(12): 841-850. Link: https://www.ncbi.nlm.nih.gov/pubmed/26075755

Staud R, et al. (2015) Evidence for sensitized fatigue pathways in patients with chronic fatigue syndrome. *PAIN* 156(4): 750-759. Link: https://www.ncbi.nlm.nih.gov/pubmed/25659069

Sutcliffe K, et al. (2010) Home orthostatic training in chronic fatigue syndrome – a randomized, placebo-controlled feasibility study. *European Journal of Clinical Investigation* 40(1): 18-24. Link: https://www.ncbi.nlm.nih.gov/pubmed/19912315

Tan MP, *et al.* (2010) Home orthostatic training in vasovagal syncope modifies autonomic tone: results of a randomized, placebo-controlled pilot study. *Europace* 12(2): 240-246. Link:

https://academic.oup.com/europace/article/12/2/240/431552

Van Oosterwijck J, et al. (2017) The Role of Autonomic Function in Exercise-Induced Endogenous Analgesia: A Case-control study in Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome and Healthy People. *Pain Physician* 20 (3): E389-E399. Link:

https://www.ncbi.nlm.nih.gov/pubmed/28339438

Vos-Vromans D, et al. (2017) Economic evaluation of multidisciplinary rehabilitation treatment versus cognitive behavioural therapy for patients with chronic fatigue syndrome: A randomized controlled trial. *PLoS One* 12 (6): e0177260. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456034/

Whitehead L and Campion P. (2002) Can General Practitioners Manage Chronic Fatigue Syndrome? A Controlled Trial. *Journal of Chronic Fatigue Syndrome* 10(1): 55-64. Link:

http://www.tandfonline.com/doi/abs/10.1300/J092v10n01 05

9.6 PACE Trial, The

Agardy S. (2017) Chronic fatigue syndrome patients have no reason to accept the PACE trial results: Response to Keith J Petrie and John Weinman. *Journal of Health Psychology* 22 (9): 1206-1208. Link:

https://www.ncbi.nlm.nih.gov/pubmed/28805512

Edwards J. (2017) PACE team response shows a disregard for the principles of science. *Journal of Health Psychology* 22 (9): 1155-1158. Link: https://www.ncbi.nlm.nih.gov/pubmed/28805520

Friedberg F et al. (2019) Rethinking the Standard of Care for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. *Journal of General Internal Medicine* pp 1-4. Link: https://tinyurl.com/vc4wujm

Geraghty KJ. (2017) Further commentary on the PACE trial: Biased methods and unreliable outcomes. *Journal of Health Psychology* 22 (9): 1209-1216. Link: https://www.ncbi.nlm.nih.gov/pubmed/28805517

Goudsmit E and Howes S. (2017) Bias, misleading information and lack of respect for alternative views have distorted perceptions of myalgic encephalomyelitis/chronic fatigue syndrome and its treatment. *Journal of Health Psychology* 22 (9): 1159-1167. Link: https://www.ncbi.nlm.nih.gov/pubmed/28805527

Jason LA. (2017) The PACE trial missteps on pacing and patient selection. Journal of Health Psychology 22 (9): 1141-1145. Link: https://www.ncbi.nlm.nih.gov/pubmed/28805518

Krike KD. (2017) PACE investigators' response is misleading regarding patient survey results. *Journal of Health Psychology* 22 (9): 1168-1176. Link: https://www.ncbi.nlm.nih.gov/pubmed/28805528

Lubet S. (2017) Defense of the PACE trial is based on argumentation fallacies. Journal of Health Psychology 22 (9): 1201-1205. Link: https://www.ncbi.nlm.nih.gov/pubmed/28805515

Lubet S. (2017) Investigator bias and the PACE trial. *Journal of Health Psychology* 22 (9): 1123-1127. Link: https://www.ncbi.nlm.nih.gov/pubmed/28805514

Petrie KJ and Weinman J. (2017) The PACE trial: It's time to broaden perceptions and move on. *Journal of Health Psychology* 22 (9): 1198-1200. Link: https://www.ncbi.nlm.nih.gov/pubmed/28805523

PLOS ONE Editors, The (2017) Expression of Concern: Adaptive Pacing, Cognitive Behaviour Therapy, Graded Exercise, and Specialist Medical Care for Chronic Fatigue Syndrome: A Cost-Effectiveness Analysis. *PLoS One* 12 (5): e01777037. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5412692/

Sharpe M, et al. (2015) Rehabilitative treatments for chronic fatigue syndrome: long-term follow-up from the PACE trial. *The Lancet Psychiatry* 2(12): 1067-1074. Link: https://www.ncbi.nlm.nih.gov/pubmed/26521770

The ME Association Index of Published ME/CFS Research

Sharpe M et al. (2019) The PACE trial of treatments for chronic fatigue syndrome: a response to WILSHIRE et al. *BMC Psychology* 7 (1): 15. Link: https://www.ncbi.nlm.nih.gov/pubmed/30871632

Shepherd CB. (2013) Comments on 'Recovery from chronic fatigue syndrome after treatments given in the PACE trial' [Letter to the editor]. *Psychological Medicine* 43(8): 1790-1791. Link: https://tinyurl.com/y3y7nn88

Shepherd CB. (2016) Patient reaction to the PACE trial [Correspondence]. The Lancet Psychiatry 3(2): e7-e8. Link:

http://www.thelancet.com/pdfs/journals/lanpsy/PIIS2215-0366(15)00546-5.pdf

Shepherd CB. (2017) PACE trial claims for recovery in myalgic encephalomyelitis/chronic fatigue syndrome - true or false? It's time for an independent review of the methodology and results. *Journal of Health Psychology* 22 (9): 1187-1191. Link:

https://www.ncbi.nlm.nih.gov/pubmed/28805522

Stouten B, et al. (2011) The PACE trial in chronic fatigue syndrome [Correspondence]. *The Lancet* 377(9780): 1832-1833. Link: https://www.ncbi.nlm.nih.gov/pubmed/21592559

Stouten B. (2017) PACE-GATE: An alternative view on a study with a poor trial protocol. *Journal of Health Psychology* 22 (9): 1192-1197. Link: https://www.ncbi.nlm.nih.gov/pubmed/28805525

Tuller D. (2017) Once again, the PACE authors respond to concerns with empty answers. *Journal of Health Psychology* 22 (9): 1118-1122. Link: https://www.ncbi.nlm.nih.gov/pubmed/28805521

Vink M. PACE trial authors continue to ignore their own null effect. *Journal of Health Psychology* 22 (9): 1134-1140. Link: https://www.ncbi.nlm.nih.gov/pubmed/28805519

White PD, et al. (2011) Comparison of adaptive pacing therapy, cognitive behaviour therapy, graded exercise therapy, and specialist medical care for chronic fatigue syndrome (PACE): a randomised trial. The Lancet 377 (9768): 823-836. Link: https://www.ncbi.nlm.nih.gov/pubmed/21334061

White PD, et al. (2013) Recovery from chronic fatigue syndrome after treatments given in the PACE trial. *Psychological Medicine* 43(10): 2227-2235. Link: https://www.ncbi.nlm.nih.gov/pubmed/23363640

Wilshire C, *et al.* (2017) Can patients with chronic fatigue syndrome really recover after graded exercise or cognitive behavior therapy? A critical commentary and preliminary re-analysis of the PACE trial. *Fatigue: Biomedicine, Health and Behaviour 5* (1): 43-56. Link:

http://www.tandfonline.com/doi/abs/10.1080/21641846.2017.1259724

Wilshire C. (2017) The problem of bias in behavioural intervention studies: Lessons from the PACE trial. *Journal of Health Psychology* 22 (9): 1128-1133. Link: https://www.ncbi.nlm.nih.gov/pubmed/28805526

Wilshire CE, *et al.* (2018) Rethinking the treatment of chronic fatigue syndromea reanalysis and evaluation of findings from a recent major trial of graded exercise and CBT.

BMC Psychology 6 (1): 6. Link: https://www.ncbi.nlm.nih.gov/pubmed/29562932

9.7 Pharmacological treatment

Almenar-Perez E et al. (2019) Impact of Polypharmacy on Candidate Biomarker miRNomes for the Diagnosis of Fibromyalgia and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Striking Back on Treatments. Pharmaceutics 11 (3). Link: https://www.ncbi.nlm.nih.gov/pubmed/30889846

Amsterdam JD, *et al*. (2008) Open-label study of s-citalopram therapy of chronic fatigue syndrome and co-morbid major depressive disorder. *Progress in Neuro-Psychopharmacology and Biological Psychiatry* 32(1): 100-106. Link: https://www.ncbi.nlm.nih.gov/pubmed/17804135

Arnold LM, *et al*. (2007) Gabapentin in the treatment of fibromyalgia: A randomized, double-blind, placebo-controlled, multicentre trial. *Arthritis* & *Rheumatology* 56(4): 1336-1344. Link: https://www.ncbi.nlm.nih.gov/pubmed/17393438

Arnold LM, et al. (2015) A Randomized, Placebo-Controlled, Double-Blinded Trial of Duloxetine in the Treatment of General Fatigue in Patients with Chronic Fatigue Syndrome. *Psychosomatics* 56(3): 242-253. Link: https://www.ncbi.nlm.nih.gov/pubmed/25660434

Behan PO, *et al*. (1994) A Pilot Study of Sertraline for the Treatment of Chronic Fatigue Syndrome. *Clinical Infectious Diseases* 18: \$111. Link: https://academic.oup.com/cid/article-abstract/18/Supplement_1/\$111/316909

Blacker C, *et al*. (2004) Effect of galantamine hydrobromide in chronic fatigue syndrome: A randomized controlled trial. JAMA 292(10): 1195-1204. Link: https://www.ncbi.nlm.nih.gov/pubmed/15353532

The ME Association Index of Published ME/CFS Research

Blockmans D, et al. (2003) Combination therapy with hydrocortisone and fludrocortisone does not improve symptoms in chronic fatigue syndrome: a randomized, placebo-controlled, double-blind, crossover study. The American Journal of Medicine 114(9): 736-741. Link: https://www.ncbi.nlm.nih.gov/pubmed/12829200

Blockmans D, *et al*. (2006) Does Methylphenidate Reduce the Symptoms of Chronic Fatigue Syndrome? The American Journal of Medicine 119(2): 167 Links

Chronic Fatigue Syndrome? The American Journal of Medicine 119(2): 167. Link: https://www.ncbi.nlm.nih.gov/pubmed/16443425

Bolton MJ et al. (2020) Low-dose naltrexone as a treatment for chronic fatigue syndrome. *BMJ Case Reports* 13 (1). Link: https://casereports.bmj.com/content/13/1/e232502

Bowman MA, et al. (1997) Use of amantadine for chronic fatigue syndrome. Archives of Internal Medicine 157(11): 1264-1265. Link: https://jamanetwork.com/journals/jamainternalmedicine/article-abstract/623398

Brook M, et al. (1993) Interferon-a therapy for patients with chronic fatigue syndrome [Correspondence]. *Journal of Infectious Diseases* 168(3): 791-792. Link: https://academic.oup.com/jid/article-abstract/168/3/791/870716

Bvorob'eva OV and Rusaya VV. (2017) Efficacy and safety of noophen in the treatment of CFS in patients with cerebrovascular insufficiency. *Zh Nevrol Psikhiatr Im S Korsakova* 117 (11): 31-36. Link: https://www.ncbi.nlm.nih.gov/pubmed/29265084 (Article in Russian)

Cabanas H et al. (2019) Naltrexone Restores Impaired Transient Receptor Potential Melastatin 3 Ion Channel Function in Natural Killer Cells From Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients. *Frontiers in Immunology* [Epub ahead of print] Link: https://tinyurl.com/yy92pwks

Campen CL et al. (2019) Open Trial of Vitamin B12 Nasal Drops in Adults With Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Comparison of Responders and Non-Responders. *Frontiers in Pharmacology* [Epub ahead of print]. Link: https://tinyurl.com/ugd8om5

Cleare AJ, et al. (1999) Low-dose hydrocortisone in chronic fatigue syndrome: a randomised crossover trial. *The Lancet* 353(9151): 455-458. Correspondence: see The Lancet 1999, Vol 353, No. 9164. Link: https://www.ncbi.nlm.nih.gov/pubmed/9989716

Cleare AJ, et al. (2004) Levels of DHEA and DHEAS and responses to CRH stimulation and hydrocortisone treatment in chronic fatigue syndrome. Psychoneuroendocrinology 29(6): 724-732. Link: https://www.ncbi.nlm.nih.gov/pubmed/15110921

Comhaire F (2018a) Treating patients suffering from myalgic encephalopathy/chronic fatigue syndrome (ME/CFS) with sodium dichloroacetate: An open-label, proof-of-principle pilot trial. Medical Hypotheses 114: 45-48. Link: https://www.ncbi.nlm.nih.gov/pubmed/29602463

Comhaire F (2018b) Why do some ME/CFS patients benefit from treatment with sodium dichloroacetate, but others do not? *Medical Hypotheses* 120: 65-67. Link: https://www.ncbi.nlm.nih.gov/pubmed/30220343

Comhaire F and Deslypere JP et al. (2019) News and views in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): The role of co-morbidity and novel treatments. *Medical Hypotheses* 134: 109444. Link: https://tinyurl.com/y3o583vb

Cox IM, et al. (1991) Red blood cell magnesium and chronic fatigue syndrome. The Lancet 337(8744): 757-760. Link: https://www.ncbi.nlm.nih.gov/pubmed/1672392

de Jong JC, et al. (2003) Combined use of SSRIs and NSAIDs increases the risk of gastrointestinal adverse effects. *British Journal of Clinical Pharmacology* 55(6): 591-595. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1884264/

Diaz-Mitoma F, et al. (2003) Clinical Improvement in Chronic Fatigue Syndrome Is Associated with Enhanced Natural Killer Cell-Mediated Cytotoxicity: The Results of a Pilot Study with Isoprinosine®. *Journal of Chronic Fatigue Syndrome* 11(2): 71-95. Link: http://www.tandfonline.com/doi/abs/10.1300/j092v11n02_06

Dismukes WE, et al. (1990) A Randomized, Double-Blind Trial of Nystatin Therapy for the Candidiasis Hypersensitivity Syndrome. New England Journal of Medicine 323(25): 1717-1723. Link: https://www.ncbi.nlm.nih.gov/pubmed/2247104

Doyle JF, et al. (2012) Midodrine: use and current status in the treatment of hypotension. *British Journal of Cardiology* 19(1): 34. Link: https://bjcardio.co.uk/2012/03/midodrine-use-and-current-status-in-the-treatment-of-hypotension/

DuBois R. (1986) Gamma globulin therapy for chronic mononucleosis syndrome. *AIDS Research* 2: \$191-195. Link: https://www.ncbi.nlm.nih.gov/pubmed/2435296

Dunn KM and Hay EM. (2010) Opioids for chronic musculoskeletal pain. *BMJ* 341: 467-468. Link: http://www.bmj.com/content/341/bmj.c3533

Fluge Ø and Mella O. (2009) Clinical impact of B-cell depletion with the anti-CD20 antibody rituximab in chronic fatigue syndrome: a preliminary case series. BMC Neurology 9: 28. Link: https://www.ncbi.nlm.nih.gov/pubmed/19566965

Fluge Ø, et al. (2011) Benefit from B-Lymphocyte Depletion Using the Anti-CD20 Antibody Rituximab in Chronic Fatigue Syndrome. A Double-Blind and Placebo-Controlled Study. *PLoS ONE* 6(10): e26358. Link: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0026358

Fluge Ø, et al. (2015) B-Lymphocyte Depletion in Myalgic Encephalopathy/Chronic Fatigue Syndrome. An Open-Label Phase II Study with Rituximab Maintenance Treatment. *PLoS ONE* 10(7): e0129898. Link: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0129898

Fluge Ø et al. (2019) B-Lymphocyte Depletion in Patients With Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Randomized, Double-Blind, Placebo-Controlled Trial. *Annual of International Medicine* [Epub ahead of print]. Link: https://www.ncbi.nlm.nih.gov/pubmed/30934066

Forsyth LM, et al. (1999) Therapeutic effects of oral NADH on the symptoms of patients with chronic fatigue syndrome. Annals of Allergy, Asthma & Immunology 82(2): 185-191. Link: https://www.ncbi.nlm.nih.gov/pubmed/10071523

Fragkos, *et al.* (2018) Severe eosinophilic colitis caused by neuropathic agents in a patient with chronic fatigue syndrome and functional abdominal pain: case report and review of the literature. *Z Gastroenterology 56 (6): 573-577*. Link: https://www.ncbi.nlm.nih.gov/pubmed/29890559

Fukuda S, et al. (2016) Ubiquinol-10 supplementation improves autonomic nervous system function and cognitive function in chronic fatigue syndrome. *Biofactors 42 (4): 431-440.* Link: https://www.ncbi.nlm.nih.gov/pubmed/27125909

GKH, The et al. (2003) The Effect of Granisetron, a 5-HT3 receptor antagonist, in the treatment of chronic fatigue syndrome patients – a pilot study. *The Netherlands Journal of Medicine* 61 (9): 285. Link: https://www.ncbi.nlm.nih.gov/pubmed/14692441

GKH, The et al. (2010) The Effect of Ondansetron, a 5-HT3 Receptor Antagonist, in Chronic Fatigue Syndrome: A Randomized Controlled Trial. *The Journal of Clinical Psychiatry* 71(5): 528-533. Link: https://www.ncbi.nlm.nih.gov/pubmed/20122367

Gottfries C-G, et al. (2006) Long-Term Treatment with a Staphylococcus Toxoid Vaccine in Patients with Fibromyalgia and Chronic Fatigue Syndrome. *Journal of Chronic Fatigue Syndrome* 13(4): 29-40. Link: http://www.tandfonline.com/doi/abs/10.1300/J092v13n04 04

Henderson T. (2014) Valacyclovir treatment of chronic fatigue in adolescents. Advances in Mind-Body Medicine 28(1): 4-14. Link: http://europepmc.org/abstract/med/24445302

Hermans L, et al. (2017) Influence of Morphine and Naloxone on Pain Modulation in Rheumatoid Arthritis, Chronic Fatigue Syndrome/Fibromyalgia, and Controls: A Double-Blind, Randomized, Placebo-Controlled, Cross-Over Study. *Pain Practice*. Link: https://www.ncbi.nlm.nih.gov/pubmed/28722815

Hickie I, et al. (2000) A randomized, double-blind, placebo-controlled trial of moclobemide in patients with chronic fatigue syndrome. *The Journal of Clinical Psychiatry* 61(9): 643-648. Link: https://www.ncbi.nlm.nih.gov/pubmed/11030484

Higgins N, et al. (2013a) Looking for idiopathic intracranial hypertension in patients with chronic fatigue syndrome. *Journal of Observational Pain Medicine* 1(2): 28-35.

Link: https://www.researchgate.net/publication/281742803 Looking for idiopat hic_intracranial_hypertension_in_patients_with_chronic_fatigue_syndrome

Higgins N, et al. (2013b) Lumbar puncture, chronic fatigue syndrome and idiopathic intracranial hypertension: a cross-sectional study. *JRSM Short Reports* 4(12). Link: https://www.ncbi.nlm.nih.gov/pubmed/24475346

Jeffrey M et al. (2019) Treatment Avenues in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Split-gender Pharmacogenomic Study of Gene-expression Modules. *Clinical Therapeutics* [Epub ahead of print]. Link: https://www.sciencedirect.com/science/article/abs/pii/S0149291819300475

Jones EA. (1999) Relief from profound fatigue associated with chronic liver disease by long-term ondansetron therapy. *The Lancet* 354(9176): 397. Link: https://www.ncbi.nlm.nih.gov/pubmed/10437877

Jones MG, *et al*. (2005) Plasma and urinary carnitine and acylcarnitines in chronic fatigue syndrome. *Clinica Chimica Acta* 360(1–2): 173-177. Link: https://www.ncbi.nlm.nih.gov/pubmed/15967423

Joung JY et al. (2019) The Efficacy and Safety of Myelophil, an Ethanol Extract Mixture of Astragali Radix and Salviae Radix, for Chronic Fatigue Syndrome: A Randomized Clinical Trial. *Frontiers in Pharmacology* 10: 991. Link: https://www.ncbi.nlm.nih.gov/pubmed/31551788

The ME Association Index of Published ME/CFS Research

Kaslow JE, et al. (1989) Liver extract–folic acid–cyanocobalamin vs placebo for chronic fatigue syndrome. *Archives of Internal Medicine* 149(11): 2501-2503. Link: https://www.ncbi.nlm.nih.gov/pubmed/2684076

Kavi L, et al. (2016) A profile of patients with postural tachycardia syndrome and their experience of healthcare in the UK. *The British Journal of Cardiology* 23(1): 33. Link: https://bjcardio.co.uk/2016/03/a-profile-of-patients-with-postural-tachycardia-syndrome-and-their-experience-of-healthcare-in-the-uk/

Kawamura Y, et al. (2003) Efficacy of a half dose of oral pyridostigmine in the treatment of chronic fatigue syndrome: three case reports. *Pathophysiology* 9(3): 189-194. Link: https://www.ncbi.nlm.nih.gov/pubmed/14567934

Kerr JR, et al. (2003) Successful Intravenous Immunoglobulin Therapy in 3 Cases of Parvovirus B19-Associated Chronic Fatigue Syndrome. *Clinical Infectious Diseases* 36(9): e100-e106. Link:

https://academic.oup.com/cid/article/36/9/e100/313942

Kogelnik AM, *et al*. (2006) Use of valganciclovir in patients with elevated antibody titers against Human Herpesvirus-6 (HHV-6) and Epstein–Barr Virus (EBV) who were experiencing central nervous system dysfunction including long-standing fatigue. *Journal of Clinical Virology* 37(Supplement 1): \$33-\$38. Link: https://www.ncbi.nlm.nih.gov/pubmed/17276366

Lane RJM, et al. (1986) A double-blind, placebo-controlled, crossover study of verapamil in exertional muscle pain. *Muscle & Nerve* 9(7): 635-641. Link: https://www.ncbi.nlm.nih.gov/pubmed/3531845

Lerner AM, et al. (1997) New cardiomyopathy: Pilot study of intravenous ganciclovir in a subset of the chronic fatigue syndrome. *Infectious Diseases in Clinical Practice* 6(2): 110-117. Link: http://www.ncf-net.org/library/ganciclovir.htm

Lerner AM, et al. (2002) A six-month trial of valacyclovir in the Epstein-Barr virus subset of chronic fatigue syndrome: improvement in left ventricular function. *Drugs Today* 38(8): 549-561. Link: https://www.ncbi.nlm.nih.gov/pubmed/12582420

Lloyd A, et al. (1990) A double-blind, placebo-controlled trial of intravenous immunoglobulin therapy in patients with chronic fatigue syndrome. *The American Journal of Medicine* 89(5): 561-568. Link: https://www.ncbi.nlm.nih.gov/pubmed/2146875

Lloyd A, et al. (1993) Immunologic and psychologic therapy for patients with chronic fatigue syndrome: A double-blind, placebo-controlled trial. *The American Journal of Medicine* 94(2): 197-203. Link: https://www.ncbi.nlm.nih.gov/pubmed/8430715

Loebel M, et al. (2016) Antibodies to β adrenergic and muscarinic cholinergic receptors in patients with Chronic Fatigue Syndrome. *Brain, Behaviour, and Immunity* 52: 32-39. Link: https://www.ncbi.nlm.nih.gov/pubmed/26399744

Majeed T, et al. (1995) Abnormalities of carnitine metabolism in chronic fatigue syndrome. European Journal of Neurology 2(5): 425-428. Link: https://www.ncbi.nlm.nih.gov/pubmed/24283722

McKenzie R, *et al.* (1998) Low-dose hydrocortisone for treatment of chronic fatigue syndrome: A randomized controlled trial. JAMA 280(12): 1061-1066. Link: https://www.ncbi.nlm.nih.gov/pubmed/9757853

Medicines and Healthcare Products Regulatory Agency. (2008) Modafinil: serious skin reactions, hypersensitivity, and psychiatric symptoms. *Drug Safety Update* 1(8): 5. Link: http://www.sefap.it/farmacovigilanza_news_200803/Drug-Safety-Update-March-2008.pdf

Medicines and Healthcare Products Regulatory Agency. (2015) 4.15 Cardiac rhythm disorders—QT interval prolongation. Selective serotonin reuptake inhibitors (SSRIs) learning module. Link: http://www.mhra.gov.uk/ssri-learning-module/con146583?usesecondary=&showpage=20

Mitchell W. (2006) 60: Review of Ampligen clinical trials in chronic fatigue syndrome. *Journal of Clinical Virology* 37 (Supplement 1): \$113. Link: http://www.journalofclinicalvirology.com/article/\$1386-6532(06)70079-8/abstract

Mitchell WM. (2016) Efficacy of rintaolimod (Ampligen) in the treatment of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). Expert Reviews Clinical Pharmacology 9 (6): 755 – 770. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4917909/

Montoya JG, et al. (2013) Randomized clinical trial to evaluate the efficacy and safety of valganciclovir in a subset of patients with chronic fatigue syndrome. Journal of Medical Virology 85(12): 2101-2109. Link: https://www.ncbi.nlm.nih.gov/pubmed/23959519

Moore RA, et al. (2015) Amitriptyline for neuropathic pain in adults. Cochrane Database of Systematic Reviews 7. Link: https://www.ncbi.nlm.nih.gov/pubmed/26146793

Morriss RK, et al. (2002) Neuropsychological performance and noradrenaline function in chronic fatigue syndrome under conditions of high arousal. Psychopharmacology 163(2): 166-173. Link: https://www.ncbi.nlm.nih.gov/pubmed/12202963

Morris G et al. (2019) Myalgic encephalomyelitis/chronic fatigue syndrome: From pathophysiological insights to novel therapeutic opportunities. Pharmocological Research [Epub ahead of print]. Link: https://www.ncbi.nlm.nih.gov/pubmed/31509764

Murakami M, et al. (2015) A randomized, double-blind, placebo-controlled phase III trial of duloxetine in Japanese fibromyalgia patients. *Arthritis Research* & *Therapy* 17: 224. Link: https://www.ncbi.nlm.nih.gov/pubmed/26296539

Naschitz J, et al. (2004) Midodrine treatment for chronic fatigue syndrome. Postgraduate Medical Journal 80(942): 230-232. Link: http://pmj.bmj.com/content/80/942/230.info

Natelson BH, et al. (1996) Randomized, double blind, controlled placebo-phase in trial of low dose phenelzine in the chronic fatigue syndrome. *Psychopharmacology* 124(3): 226-230. Link: https://www.ncbi.nlm.nih.gov/pubmed/8740043

Natelson BH, et al. (1998) Single-Blind, Placebo Phase-in Trial of Two Escalating Doses of Selegiline in the Chronic Fatigue Syndrome. *Neuropsychobiology* 37(3): 150-154. Link: https://www.ncbi.nlm.nih.gov/pubmed/9597672

Neary JP, *et al*. (2008) Prefrontal cortex oxygenation during incremental exercise in chronic fatigue syndrome. *Clinical Physiology and Functional Imaging* 28(6): 364-372. Link: https://www.ncbi.nlm.nih.gov/pubmed/18671793

Nijs J, et al. (2012) Pain in patients with chronic fatigue syndrome: time for specific pain treatment? *Pain Physician* 15(5): E677-E686. Link: https://www.ncbi.nlm.nih.gov/pubmed/22996861

Nilsson MKL, et al. (2017) A randomised controlled trial of the monoaminergic stabiliser (-)-OSU6162 in treatment of myalgic encephalomyelitis/chronic fatigue syndrome. Acta Neuropsychiatry 7: 1-10. Link: https://www.ncbi.nlm.nih.gov/pubmed/29212562

Ottman A, Warner CB and Brown JN (2018) The role of mirtazapine in patients with fibromyalgia: a systematic review. *Rheumatology International* 28 (12): 2217-2224. Link: https://www.ncbi.nlm.nih.gov/pubmed/29860538

Peterson PK, et al. (1990) A controlled trial of intravenous immunoglobulin G in chronic fatigue syndrome. The American Journal of Medicine 89(5): 554-560. Link: https://www.ncbi.nlm.nih.gov/pubmed/2239975

Peterson PK, *et al.* (1998) A preliminary placebo-controlled crossover trial of fludrocortisone for chronic fatigue syndrome. *Archives of Internal Medicine* 158(8): 908-914. Link: https://www.ncbi.nlm.nih.gov/pubmed/9570178

Plioplys AV and Plioplys S. (1997) Amantadine and L-Carnitine Treatment of Chronic Fatigue Syndrome. *Neuropsychobiology* 35(1): 16-23. Link: https://www.ncbi.nlm.nih.gov/pubmed/9018019

Polo O et al. (2019) Low-dose naltrexone in the treatment of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Fatigue: Biomedicine, Helath and Behaviour. Link:

https://www.tandfonline.com/doi/abs/10.1080/21641846.2019.1692770

Puri BK. (2004) The use of eicosapentaenoic acid in the treatment of chronic fatigue syndrome. *Prostaglandins, Leukotrienes and Essential Fatty Acids* 70(4): 399-401. Link: https://www.ncbi.nlm.nih.gov/pubmed/15041033

Randall DC, et al. (2005) Chronic treatment with modafinil may not be beneficial in patients with chronic fatigue syndrome. *Journal of Psychopharmacology* 19(6): 647-660. Link: https://www.ncbi.nlm.nih.gov/pubmed/16272188

Regland B, et al. (2015) Response to Vitamin B12 and Folic Acid in Myalgic Encephalomyelitis and Fibromyalgia. *PLoS ONE* 10(4): e0124648. Link: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0124648

Rekeland IG et al. (2019) Rituximab Serum Concentrations and Anti-Rituximab Antibodies During B-Cell Depletion Therapy for Myalgic Encephalopathy/Chronic Fatigue Syndrome. *Clinical Therapeutics* 41 (5): 806-814. Link: https://www.ncbi.nlm.nih.gov/pubmed/30502905

Rekeland IG et al. (2020) Intravenous Cyclophosphamide in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. An Open-Label Phase II Study. *Frontiers in Medicine* 7: 162. Link: https://www.frontiersin.org/articles/10.3389/fmed.2020.00162/full

Reuter SE and Evans AM. (2011) Long-chain acylcarnitine deficiency in patients with chronic fatigue syndrome. Potential involvement of altered carnitine palmitoyltransferase-I activity. *Journal of Internal Medicine* 270(1): 76-84. Link: https://www.ncbi.nlm.nih.gov/pubmed/21205027

Richman S et al. (2019) Pharmaceutical Interventions in Chronic Fatigue Syndrome: A Literature-based Commentary. *Clinical Therapeutics* 41 (5): 798-805. Link:

https://www.sciencedirect.com/science/article/abs/pii/S0149291819300712#!

Roerink ME, *et al.* (2015) Cytokine inhibition in chronic fatigue syndrome patients: study protocol for a randomized controlled trial. *Trials* 16: 439. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4595002/

Roerink ME, et al. (2017) Cytokine signatures in chronic fatigue syndrome patients: a Case Control Study and the effect of anakinra treatment. *Journal of Translational Medicine* 15: 267. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5747240/

Rowe KS. (1997) Double-blind randomized controlled trial to assess the efficacy of intravenous gammaglobulin for the management of chronic fatigue syndrome in adolescents. *Journal of Psychiatric Research* 31(1): 133-147. Link: https://www.ncbi.nlm.nih.gov/pubmed/9201655

Rowe PC, *et al.* (2001) Fludrocortisone acetate to treat neurally mediated hypotension in chronic fatigue syndrome: A randomized controlled trial. *JAMA* 285(1): 52-59. Link: https://jamanetwork.com/journals/jama/fullarticle/193426

Royds J et al. (2019) An investigation into the modulation of T cell phenotypes by amitriptyline and nortriptyline. *European Neuropsychopharmacology* [Epub ahead of print]. Link:

https://www.sciencedirect.com/science/article/abs/pii/S0924977X1931870X

Santaella ML, *et al.* (2004) Comparison of oral nicotinamide adenine dinucleotide (NADH) versus conventional therapy for chronic fatigue syndrome. *Puerto Rico Health Sciences Journal* 23(2): 89. Link: https://www.ncbi.nlm.nih.gov/pubmed/15377055

See DM and Tilles JG. (1996) Alpha Interferon Treatment of Patients with Chronic Fatigue Syndrome. *Immunological Investigations* 25(1-2): 153-164. Link: http://www.tandfonline.com/doi/abs/10.3109/08820139609059298

Shepherd C. (1997) Long-term treatment is being used. Letter to the editor in response to 'Giving thyroid hormones to clinically hypothyroid but biochemically euthyroid patients'. *BMJ* 315(7111): 814. Link: http://www.bmj.com/content/315/7111/813

Späth M, et al. (2000) Treatment of chronic fatigue syndrome with 5-HT3 receptor antagonists – preliminary results. *Scandinavian Journal of Rheumatology* 29(113): 72-77. Link: http://www.tandfonline.com/doi/abs/10.1080/030097400750001851-1

Staud R, et al. (2017) Muscle injections with lidocaine improve resting fatigue and pain in patients with chronic fatigue syndrome. *Journal of Pain Research* 10: 1477-1486. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5499959/

St. Clair EW, et al. (2013) Rituximab Therapy for Primary Sjögren's Syndrome: An Open-Label Clinical Trial and Mechanistic Analysis. *Arthritis & Rheumatology* 65(4): 1097-1106. Link: https://www.ncbi.nlm.nih.gov/pubmed/23334994

Steinberg P, et al. (1996) Double-blind placebo-controlled study of the efficacy of oral terfenadine in the treatment of chronic fatigue syndrome. *Journal of Allergy and Clinical Immunology* 97(1): 119-126. Link: http://www.jacionline.org/article/S0091-6749(96)70290-7/fulltext

Strayer DR, et al. (1994) A Controlled Clinical Trial with a Specifically Configured RNA Drug, Poly(I). Poly(C12U), in Chronic Fatigue Syndrome. *Clinical Infectious Diseases* 18(Supplement 1): S88-S95. Link: https://www.ncbi.nlm.nih.gov/pubmed/8148460

Strayer DR, *et al.* (2012) A Double-Blind, Placebo-Controlled, Randomized, Clinical Trial of the TLR-3 Agonist Rintatolimod in Severe Cases of Chronic Fatigue Syndrome. *PLoS ONE* 7(3): e31334. Link: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0031334

Strayer Dr, *et al.* (2020). Effect of disease duration in a randomized Phase III trial of rintatolimod, an immune modulator for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. *PLoS One*. Link: https://pubmed.ncbi.nlm.nih.gov/33119613/

Straus SE, et al. (1988) Acyclovir Treatment of the Chronic Fatigue Syndrome. Lack of efficacy in a placebo-controlled trial. *New England Journal of Medicine* 319(26): 1692-1698. Link: https://www.ncbi.nlm.nih.gov/pubmed/2849717

Tan T, et al. (2010) Pharmacological management of neuropathic pain in non-specialist settings: summary of NICE guidance. *BMJ* 340: c1079. Link: https://www.ncbi.nlm.nih.gov/pubmed/20335333

Teitelbaum JE, et al. (2006) The Use of D-Ribose in Chronic Fatigue Syndrome and Fibromyalgia: A Pilot Study. *The Journal of Alternative and Complementary Medicine* 12(9): 857-862. Link: https://www.ncbi.nlm.nih.gov/pubmed/17109576

Turkington D, et al. (2004) Recovery from chronic fatigue syndrome with modafinil. *Human Psychopharmacology: Clinical and Experimental* 19(1): 63-64. Link: https://www.ncbi.nlm.nih.gov/pubmed/14716715

Van Campen LMC and Visser FC (2019) The Effect of Curcumin in Patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Disparate Responses in Different Disease Severities. *Pharmacovigilance and Pharmacoepidemiology* 2 (1). Link: https://tinyurl.com/apvhgdm

The ME Association Index of Published ME/CFS Research

van Heukelom RO, et al. (2006) Influence of melatonin on fatigue severity in patients with chronic fatigue syndrome and late melatonin secretion. European Journal of Neurology 13(1): 55-60. Link:

https://www.ncbi.nlm.nih.gov/pubmed/16420393

Vaucher P, et al. (2012) Effect of iron supplementation on fatigue in nonanemic menstruating women with low ferritin: a randomized controlled trial. *Canadian Medical Association Journal* 184(11): 1247-1254. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3414597/

Vercoulen JH, et al. (1996a) Randomised, double-blind, placebo-controlled study of fluoxetine in chronic fatigue syndrome. *The Lancet* 347(9005): 858-861. Correspondence: see The Lancet 1996, Vol 347, No. 9017. Link: https://www.ncbi.nlm.nih.gov/pubmed/8622391

Venturini L et al. (2019) Modification of Immunological Parameters, Oxidative Stress Markers, Mood Symptoms, and Well-Being Status in CFS Patients after Probiotic Intake: Observations from a Pilot Study. Oxidative Medicine and Cellular Longevity. Link: https://www.hindawi.com/journals/omcl/2019/1684198/

Vermeulen RCW and Scholte HR. (2004) Exploratory Open Label, Randomized Study of Acetyl- and Propionylcarnitine in Chronic Fatigue Syndrome. *Psychosomatic Medicine* 66(2): 276-282. Link: https://www.ncbi.nlm.nih.gov/pubmed/15039515

Vollmer-Conna U, et al. (1997) Intravenous Immunoglobulin is Ineffective in the Treatment of Patients with Chronic Fatigue Syndrome. *The American Journal of Medicine* 103(1): 38-43. Link: https://www.ncbi.nlm.nih.gov/pubmed/9236484

Watt T, et al. (2012) Response to Valganciclovir in Chronic Fatigue Syndrome Patients with Human Herpesvirus 6 and Epstein–Barr virus IgG Antibody Titers. Journal of Medical Virology 84(12): 1967-1974. Link: https://deepblue.lib.umich.edu/bitstream/handle/2027.42/94236/23411_ftp.pdf

Wearden AJ, et al. (1998) Randomised, double-blind, placebo-controlled treatment trial of fluoxetine and graded exercise for chronic fatigue syndrome. The British Journal of Psychiatry 172(6): 485-490. Link: https://www.ncbi.nlm.nih.gov/pubmed/9828987

Williams G, et al. (2002) Therapy of circadian rhythm disorders in chronic fatigue syndrome: no symptomatic improvement with melatonin or phototherapy. *European Journal of Clinical Investigation* 32(11): 831-837. Link: https://www.ncbi.nlm.nih.gov/pubmed/12423324

Young JL. (2013) Use of lisdexamfetamine dimesylate in treatment of executive functioning deficits and chronic fatigue syndrome: A double blind, placebocontrolled study. *Psychiatry Research* 207(1-2): 127-133. Link: https://www.ncbi.nlm.nih.gov/pubmed/23062791

Younger J, et al. (2013) Low-dose naltrexone for the treatment of fibromyalgia: Findings of a small, randomized, double-blind, placebo-controlled, counterbalanced, crossover trial assessing daily pain levels. *Arthritis & Rheumatology* 65(2): 529-538. Link:

https://www.ncbi.nlm.nih.gov/pubmed/23359310

Younger J, et al. (2014) The use of low-dose naltrexone (LDN) as a novel anti-inflammatory treatment for chronic pain. *Clinical Rheumatology* 33 (4): 451 – 459. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3962576/

Zachrisson O, et al. (2002) Treatment with staphylococcus toxoid in fibromyalgia/ chronic fatigue syndrome—a randomised controlled trial. European Journal of Pain 6(6): 455-466. Link: https://www.ncbi.nlm.nih.gov/pubmed/12413434

9.8 Pregnancy

Schacterle RS and Komaroff AL. (2004) A comparison of pregnancies that occur before and after the onset of chronic fatigue syndrome. *Archives of Internal Medicine* 164(4): 401-404. Link:

https://www.ncbi.nlm.nih.gov/pubmed/14980991

10. Prognosis and quality of life

10.1 Age

Kidd E, et al. (2016) The Relationship between Age and Illness Duration in Chronic Fatigue Syndrome. *Diagnostics* 6(2): 16. Link: https://www.ncbi.nlm.nih.gov/pubmed/27110826

Norris T, et al. (2017) Natural course of chronic fatigue syndrome/myalgic encephalomyelitis in adolescents. *Archives of Disease in Childhood* 102 (6): 522-528. Link: https://www.ncbi.nlm.nih.gov/pubmed/28104625

10.2 Mortality

Johnson ML et al. (2020) Risk Factors for Suicide in Chronic Fatigue Syndrome. Death Studies [Epub ahead of print]. Link: https://pubmed.ncbi.nlm.nih.gov/32527207/

McManimen SL, et al. (2016) Mortality in patients with Myalgic Encephalomyelitis and Chronic Fatigue Syndrome. *Fatigue: Biomedicine, Health & Behavior 4* (4): 195-206. Link: https://www.ncbi.nlm.nih.gov/pubmed/28070451

Roberts E, et al. (2016) Mortality of people with chronic fatigue syndrome: a retrospective cohort study in England and Wales from the South London and Maudsley NHS Foundation Trust Biomedical Research Centre (SLaM BRC) Clinical Record Interactive Search (CRIS) Register. *The Lancet*, 387 (10028): 1638-43. Link: https://www.ncbi.nlm.nih.gov/pubmed/26873808

10.3 Prognosis and recovery

Bombardier CH and Buchwald D. (1995) Outcome and prognosis of patients with chronic fatigue vs chronic fatigue syndrome. *Archives of Internal Medicine* 155(19): 2105-2110. Link: https://www.ncbi.nlm.nih.gov/pubmed/7575071

Brown B, et al. (2017) 'Betwixt and between'; liminality in recovery stories from people with myalgic encephalomyelitis (ME) or chronic fatigue syndrome (CFS). Sociology, Health and Illness 39 (5): 696-710. Link: https://www.ncbi.nlm.nih.gov/pubmed/28239872

Brown MM, et al. (2012) Understanding Long-Term Outcomes of Chronic Fatigue Syndrome. *Journal of Clinical Psychology* 68(9): 1028-1035. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3940158/

Cairns R and Hotopf M. (2005) A systematic review describing the prognosis of chronic fatigue syndrome. *Occupational Medicine* 55(1): 20-31. Link: https://www.ncbi.nlm.nih.gov/pubmed/15699087

Devendorf AR, et al. (2017) Defining and measuring recovery from myalgic encephalomyelitis and chronic fatigue syndrome: the physician perspective. *Disability and Rehabilitation* 5: 1-8. Link: https://www.ncbi.nlm.nih.gov/pubmed/28982247

Devendorf A et al. (2020) Patients' hopes for recovery from myalgic encephalomyelitis and chronic fatigue syndrome: Toward a "recovery in" framework. *Chronic Illness* 16 (4): 307-321. Link: https://pubmed.ncbi.nlm.nih.gov/32772569/

Sharpe M, et al. (1992) Follow up of patients presenting with fatigue to an infectious diseases clinic. *BMJ* 305(6846): 147-152. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1883193/

Stormorken E, et al. (2017) Factors impacting the illness trajectory of post-infectious fatigue syndrome: a qualitative study of adults' experiences. *BMC Public Health* 17 (1): 952. Link: https://www.ncbi.nlm.nih.gov/pubmed/29237442

Thomas et al. (2019), Measurements of Recovery and Predictors of Outcome in an Untreated Chronic Fatigue Syndrome Sample. *Journal of Health and Medical Sciences* 2 (2): 167-178. Link: https://tinyurl.com/yxi4icia

Vercoulen JH, et al. (1996b) Prognosis in chronic fatigue syndrome: a prospective study on the natural course. *Journal of Neurology, Neurosurgery & Psychiatry* 60(5): 489-494. Link:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC486359/

Wilson A, et al. (1994) Longitudinal study of outcome of chronic fatigue syndrome. *BMJ* 308(6931): 756-759. Link:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2539669/

10.4 Quality of life

Bileviciute-Ljungar I et al. (2020) Preliminary ICF core set for patients with myalgic encephalomyelitis/chronic fatigue syndrome in rehabilitation medicine. *Journal of Rehabilitation* 52: 6. Link: https://www.medicaljournals.se/jrm/content/abstract/10.2340/16501977-2697

Buchwald D, et al. (1996) Functional status in patients with chronic fatigue syndrome, other fatiguing illnesses, and healthy individuals. *The American Journal of Medicine* 101(4): 364-370. Link: https://www.ncbi.nlm.nih.gov/pubmed/8873506

Comerford B and Podell R (2019) Medically Documenting Disability in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Cases. *Frontiers in Paediatrics* 7: 231. Link: https://www.ncbi.nlm.nih.gov/pubmed/31334205

Eaton-Fitch N et al. (2020) Health-related quality of life in patients with myalgic encephalomyelitis/chronic fatigue syndrome: an Australian cross-sectional study. *Quality of Life Research* 29 (6): 1521-1531. Link: https://www.ncbi.nlm.nih.gov/pubmed/31970624

Hvidberg MF, et al. (2015) The Health-Related Quality of Life for Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). *PLoS ONE* 10(7): e0132421. Link: https://www.ncbi.nlm.nih.gov/pubmed/26147503

Kingdon C, et al. (2018) Functional Status and Well-Being in People with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Compared with People with Multiple Sclerosis and Healthy Controls. *Pharmacoecon Open* 2 (4): 381-392 Link: https://www.ncbi.nlm.nih.gov/pubmed/29536371

Komaroff AL, et al. (1996) Health status in patients with chronic fatigue syndrome and in general population and disease comparison groups. *The American Journal of Medicine* 101(3): 281-290. Link: http://www.amimed.com/article/\$0002-9343(96)00174-X/fulltext

Nacul LC, *et al.* (2011) The functional status and wellbeing of people with myalgic encephalomyelitis/chronic fatigue syndrome and their carers. *BMC Public Health* 11: 402. Link: https://www.ncbi.nlm.nih.gov/pubmed/21619607

Schweitzer R, et al. (1995) Quality of life in chronic fatigue syndrome. Social Science & Medicine 41(10): 1367-1372. Link: https://www.ncbi.nlm.nih.gov/pubmed/8560304

Shepherd C. (1999) Living with M.E.: the chronic/post-viral fatigue syndrome, London: Vermilion. Link: http://www.meassociation.org.uk/shop/books/living-with-me/

Simila W et al. (2020) Health-related Quality of Life in Norwegian Adolescents Living With Chronic Fatigue Syndrome. *Health Quality Life Outcomes* 18(1):170. Link: https://tinyurl.com/yc9e2z9x

Strand EB, *et al*. (2018) Pain is associated with reduced quality of life and functional status in patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome, *Scandinavian Journal of pain* 19 (1): 61-72 Link: https://www.ncbi.nlm.nih.gov/pubmed/30325738

Winger A, et al. (2015) Health related quality of life in adolescents with chronic fatigue syndrome: a cross-sectional study. *Health and Quality of Life Outcomes* 13: 96. Link: https://hglo.biomedcentral.com/articles/10.1186/s12955-015-0288-3

10.5 Severe ME

Kingdon C et al. (2020) Health Care Responsibility and Compassion-Visiting the Housebound Patient Severely Affected by ME/CFS. *Healthcare* 8 (3): 197. Link: https://www.mdpi.com/2227-9032/8/3/197/htm

McDermott C, *et al.* (2014) What is the current NHS service provision for patients severely affected by chronic fatigue syndrome/myalgic encephalomyelitis? A national scoping exercise. *BMJ Open* 4(6): e005083. Link: http://bmjopen.bmj.com/content/4/6/e005083

Pendergrast T, et al. (2016) Housebound versus nonhousebound patients with myalgic encephalomyelitis and chronic fatigue syndrome. *Chronic Illness*. (Epub ahead of print). Link: https://www.ncbi.nlm.nih.gov/pubmed/27127189

Pheby D and Saffron L. (2009) Risk factors for severe ME/CFS. *Biology and Medicine* 1(4): 50-74. Link: http://www.meassociation.org.uk/wp-content/uploads/2013/04/Biology-and-Medicine Published-paper vol 4 50-74.pdf

11. Vaccinations

Andersson L. (2017) Conflicting results in article describing "HPV-vaccination and risk of chronic fatigue syndrome/myalgic encephalomyelitis". *Vaccine* 35 (51): 7081. Link: https://www.ncbi.nlm.nih.gov/pubmed/29195610

Appel S, et al. (2007) Infection and vaccination in chronic fatigue syndrome: Myth or reality? Autoimmunity 40(1): 48-53. Link: https://www.ncbi.nlm.nih.gov/pubmed/17364497

Barboi A et al. (2020) Human papillomavirus (HPV) vaccine and autonomic disorders: a position statement from the American Autonomic Society. *Clinical Autonomic Research* 30 (1): 13-18. Link: https://www.ncbi.nlm.nih.gov/pubmed/31475305

Behrman A. and Offley W. (2013) Re: Should influenza vaccination be mandatory for healthcare workers? [Letter to the editor]. *BMJ* 347: f6705. Link: https://www.ncbi.nlm.nih.gov/pubmed/24222482

Blitshetyn S, et al. (2018) Autonomic dysfunction and HPV immunization: an overview, *Immunological Research* [Epub ahead of print]. Link: https://www.ncbi.nlm.nih.gov/pubmed/30478703

Brenu EW, *et al*. (2012) The Effects of Influenza Vaccination on Immune Function in Patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis. *International Journal of Clinical Medicine* 3(6): 544-551. Link: https://file.scirp.org/pdf/IJCM20120600017 29918208.pdf

Feiring B, et al. (2017) HPV vaccination and risk of chronic fatigue syndrome/myalgic encephalomyelitis: A nationwide register-based study from Norway. Vaccine 35(33): 4203-4212. Link: https://www.ncbi.nlm.nih.gov/pubmed/28648542

Feiring B, et al. (2017) No conflicting results in the article "HPV vaccination and risk of chronic fatigue syndrome/myalgic encephalomyelitis: A nationwide register-based study from Norway". *Vaccine* 35 (51): 7082-7083. Link: https://www.ncbi.nlm.nih.gov/pubmed/29195611

The ME Association Index of Published ME/CFS Research

Gherardi RK et al. (2019) Myalgia and chronic fatigue syndrome following immunization: macrophagic myofasciitis and animal studies support linkage to aluminum adjuvant persistency and diffusion in the immune system. Autoimmune Reviews 18 (7): 691-705. Link: https://www.ncbi.nlm.nih.gov/pubmed/31059838

Hviid A et al. (2020) Association between quadrivalent human papillomavirus vaccination and selected syndromes with autonomic dysfunction in Danish females: population based, self-controlled, case series analysis. *BMJ* 370: m2930. Link: https://www.bmj.com/node/1033205.full

Jara LJ, et al. (2017) Is the immune neuroendocrine system the connection between epipharyngitis and chronic fatigue syndrome induced by HPV vaccine? Editorial. *Immunology Research* 65 (1): 5-7. Link: https://www.ncbi.nlm.nih.gov/pubmed/27605126

Magnus P, et al. (2009) Vaccination as teenagers against meningococcal disease and the risk of the chronic fatigue syndrome. Vaccine 27(1): 23-27. Link: https://www.ncbi.nlm.nih.gov/pubmed/18984023

Magnus P, et al. (2015) Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is associated with pandemic influenza infection, but not with an adjuvanted pandemic influenza vaccine. Vaccine 33(46): 6173-6177. Link: https://www.ncbi.nlm.nih.gov/pubmed/26475444

Medicines and Healthcare Products Regulatory Agency. (2012) Cervarix HPV vaccine: safety update at end of 4 years routine use in HPV immunisation programme. MHRA Public Assessment Report. Link: http://www.mhra.gov.uk/safety-public-assessment-reports/CON221607

Phelan J et al. (2020) A potential antigenic mimicry between viral and human proteins linking Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) with autoimmunity: The case of HPV immunization. Autoimmunity Reviews 19 (4): 102487. Link:

https://www.sciencedirect.com/science/article/abs/pii/S1568997220300355

Prinsen H, et al. (2012) Humoral and cellular immune responses after influenza vaccination in patients with chronic fatigue syndrome. *BMC Immunology* 13: 71. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3534525/

Rigolet M, et al. (2014) Clinical features in patients with long-lasting macrophagic myofasciitis. *Frontiers in Neurology* doi.org/10.3389/fneur.2014.00230. Link: https://www.frontiersin.org/articles/10.3389/fneur.2014.00230/full

Ryabkova VA et al. (2019) Neuroimmunology: What Role for Autoimmunity, Neuroinflammation, and Small Fiber Neuropathy in Fibromyalgia, Chronic Fatigue Syndrome, and Adverse Events after Human Papillomavirus Vaccination? *International Journal of Molecular Science* 20 (20) 5164. Link: https://www.mdpi.com/1422-0067/20/20/5164/htm

Schurink-van't Klooster TM, et al. (2018) No evidence found for an increased risk of long-term fatigue following human papillomavirus vaccination of adolescent girls, *Vaccine* 36 (45): 6796-6802 Link:

https://www.sciencedirect.com/science/article/pii/S0264410X18312684

Shepherd CB. (2001a) Is CFS linked to vaccinations? *The CFS Research Reviews* 2. Link: http://www.vaccinationcouncil.org/2009/06/04/is-cfs-linked-to-vaccinations/

Skufca J, et al. (2017) Incidence rates of Guillain Barré (GBS), chronic fatigue/systemic exertion intolerance disease (CFS/SEID) and postural orthostatic tachycardia syndrome (POTS) prior to introduction of human papilloma virus (HPV) vaccination among adolescent girls in Finland, 2002-2012. *Papillomavirus Research* 3: 91-96. Link:

https://www.ncbi.nlm.nih.gov/pubmed/28720463

Tuuminen T, et al. (2018) Dampness and mold hypersensitivity syndrome and vaccination as risk factors for chronic fatigue syndrome, Autoimmune Reviews [Epub ahead of print] Link: https://www.ncbi.nlm.nih.gov/pubmed/30408578

Vedhara K, et al. (1997) Consequences of live poliovirus vaccine administration in chronic fatigue syndrome. *Journal of Neuroimmunology* 75(1-2): 183-195. Link: http://www.sciencedirect.com/science/article/pii/S0165572897000325

12. Children and adolescents

Ali S, et al. (2019) Psychological and demographic factors associated with fatigue and social adjustment in young people with severe chronic fatigue syndrome/myalgic encephalomyelitis: a preliminary mixed-methods study. Journal of Behavioural Medicine 42 (5): 898-910 Link: https://www.ncbi.nlm.nih.gov/pubmed/30684123

Anderson E et al. (2020) Recruiting Adolescents With Chronic Fatigue Syndrome/Myalgic Encephalomyelitis to Internet-Delivered Therapy: Internal Pilot Within a Randomized Controlled Trial. *Journal of Medical Internet Research* 22 (8): e17768. Link: https://pubmed.ncbi.nlm.nih.gov/32784188/

Antiel RM, et al. (2011) Iron insufficiency and hypovitaminosis D in adolescents with chronic fatigue and orthostatic intolerance. *Southern Medical Journal* 104(8): 609-611. Link: https://sma.org/southern-medical-journal/article/iron-insufficiency-and-hypovitaminosis-d-in-adolescents-with-chronic-fatigue-and-orthostatic-intolerance/

Ascough C et al. (2020) Interventions to treat pain in paediatric CFS/ME: a systematic review. *BMJ Paediatrics Open 4* (1). Link: https://bmjpaedsopen.bmj.com/content/4/1/e000617

Bell DS, *et al*. (2001) Thirteen-year follow-up of children and adolescents with chronic fatigue syndrome. *Pediatrics* 107(5): 994-998. Link: http://pediatrics.aappublications.org/content/107/5/994

Brigden A, et al. (2017) Practical management of chronic fatigue syndrome or myalgic encephalomyelitis in childhood. *Archives of Disease in Childhood* 102 (10): 981-986. Link: https://www.ncbi.nlm.nih.gov/pubmed/28659269

Brigden A, et al. (2018) Using the internet to cope with chronic fatigue syndrome/myalgic encephalomyelitis in adolescence: a qualitative study. *BMJ Paediatrics Open* 2 (1). Link:

https://bmjpaedsopen.bmj.com/content/2/1/e000299

Brigden A, et al. (2018) Defining the minimally clinically important difference of the SF-36 physical function subscale for paediatric CFS/ME: triangulation using three different methods, *Health and Quality of Life Outcomes* 16 (1): 202. Link: https://www.ncbi.nlm.nih.gov/pubmed/30340599

Brigden A et al. (2019) Results of the feasibility phase of the managed activity graded exercise in teenagers and pre-adolescents (MAGENTA) randomised controlled trial of treatments for chronic fatigue syndrome/myalgic encephalomyelitis. *Pilot and Feasibility Studies* 5: 151. Link: https://pilotfeasibilitystudies.biomedcentral.com/articles/10.1186/s40814-019-0525-3

Brigden A et al. (2020) "The child's got a complete circle around him". The care of younger children (5–11 years) with CFS/ME. A qualitative study comparing families', teachers' and clinicians' perspectives. *Health and Social Care in the community* [Epub ahead of print]. Link: https://onlinelibrary.wiley.com/doi/full/10.1111/hsc.13029

Brodwall E et al. (2020) Pain in adolescent chronic fatigue following Epstein-Barr virus infection. *Scandinavian Journal of Pain* [Epub ahead of print]. Link: https://www.degruyter.com/view/journals/sipain/ahead-of-print/article-10.1515-sipain-2020-0031.xml

Carroll S, et al. (2018) Adolescent and parent factors related to fatigue in paediatric multiple sclerosis and chronic fatigue syndrome: A comparative study, European Journal of Paediatric Neurology23 (1): 70-80 Link: https://www.ncbi.nlm.nih.gov/pubmed/30455131

Carruthers BM and van de Sande MI (eds). (2012) Myalgic Encephalomyelitis – Adult and Paediatric: International Consensus Primer for Medical Practitioners. Available at:

http://sacfs.asn.au/download/me_international_consensus_primer_for_medical
_ practitioners.pdf

Chalder T et al. (2019) However CFS is operationalised young people's perspectives are important. *Journal of Behavioural Medicine* [Epub ahead of print]. Link: https://www.ncbi.nlm.nih.gov/pubmed/30937681

Collard S and Murphy J (2019) Management of chronic fatigue syndrome/myalgic encephalomyelitis in a pediatric population: A scoping review. *Journal of Child and Health Care* [Epub ahead of print]. Link: https://www.ncbi.nlm.nih.gov/pubmed/31379194

Collin SM, et al. (2015) Chronic fatigue syndrome (CFS) or myalgic encephalomyelitis (ME) is different in children compared to in adults: a study of UK and Dutch clinical cohorts. *BMJ Open* 5(10): e008830. Link: http://bmjopen.bmj.com/content/5/10/e008830

Collin SM, *et al.* (2018) Childhood sleep and adolescent chronic fatigue syndrome (CFS/ME): evidence of associations in a UK birth cohort. *Sleep Medicine* 46: 26-36. Link: https://www.ncbi.nlm.nih.gov/pubmed/29773208

Collin S et al. (2019) Depressive symptoms at age 9–13 and chronic disabling fatigue at age 16: A longitudinal study. *Journal of Adolescence* 75: 123-129. Link: https://www.sciencedirect.com/science/article/pii/S0140197119301289

Crawley E and Sterne JAC. (2009) Association between school absence and physical function in paediatric chronic fatigue syndrome/myalgic encephalopathy. *Archives of Disease in Childhood* 94(10): 752-756. Link: http://adc.bmj.com/content/94/10/752.info

Crawley E, et al. (2011) Unidentified Chronic Fatigue Syndrome/myalgic encephalomyelitis (CFS/ME) is a major cause of school absence: surveillance outcomes from school-based clinics. *BMJ Open* 1(2): e000252. Link: https://www.ncbi.nlm.nih.gov/pubmed/22155938

Crawley EM, et al. (2017) Clinical and cost-effectiveness of the Lightning Process in addition to specialist medical care for paediatric chronic fatigue syndrome: randomised controlled trial. Archives of Disease in Childhood, 103 (2): 155-164. Link: https://www.ncbi.nlm.nih.gov/pubmed/28931531

Dowsett EG and Colby J. (1997) Long-Term Sickness Absence Due to ME/CFS in UK Schools. *Journal of Chronic Fatigue Syndrome* 3(2): 29-42. Link: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1023.966&rep=rep1&type=pdf

Friedman KJ, et al. (2018) School Nurses Can Improve the Lives of Students With Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. *National Association of School Nurses [Epub ahead of print]* Link: https://www.ncbi.nlm.nih.gov/pubmed/30222036

Geraghty KJ and Adeniji C (2019) The importance of accurate diagnosis of Myalgic Encephalomyelitis in children and adolescents: a commentary. *Frontiers in Pediatrics* 6: 435. Link:

https://www.frontiersin.org/articles/10.3389/fped.2018.00435/full

Ghatineh S and Vink M. (2017) FITNET's Internet-Based Cognitive Behavioural Therapy Is Ineffective and May Impede Natural Recovery in Adolescents with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. A Review. Behavioural Science 7 (3). Link: https://www.ncbi.nlm.nih.gov/pubmed/28800089

Gregorowski A et al. (2019) Child and adolescent chronic fatigue syndrome/myalgic encephalomyelitis: where are we now? Curent Opinion in Pediatrics 31 (4): 462-468. Link: https://tinyurl.com/yxhgyupg

Haig-Ferguson A, et al. (2009) Memory and attention problems in children with chronic fatigue syndrome or myalgic encephalopathy. *Archives of Disease in Childhood* 94(10): 757-762. Link: http://adc.bmj.com/content/94/10/757.info

Haig-Ferguson A, *et al*. (2018) "It's not one size fits all"; the use of videoconferencing for delivering therapy in a Specialist Paediatric Chronic Fatigue Service. *Internet Interventions* [Epub ahead of print]. Link: https://www.sciencedirect.com/science/article/pii/S2214782918300642

Haines C, Loades M and Davis C (2019) Illness perceptions in adolescents with chronic fatigue syndrome and other physical health conditions: Application of the common-sense model. *Clinical Child Psychology and Psychiatry* 24 (3): 546-563. Link:

https://www.ncbi.nlm.nih.gov/pubmed/30770020

Harris S, et al. (2017) A qualitative investigation of eating difficulties in adolescents with chronic fatigue syndrome/myalgic encephalomyelitis. Clinical Child Psychology and Psychiatry 22 (1): 128-139. Link: https://www.ncbi.nlm.nih.gov/pubmed/27215228

Harland MR et al. (2019) Paediatric chronic fatigue syndrome patients' and parents' perceptions of recovery. *BMJ Paediatrics Open* 3 (1). Link: https://bmjpaedsopen.bmj.com/content/3/1/e000525

Henderson T. (2014) Valacyclovir treatment of chronic fatigue in adolescents. Advances in Mind-Body Medicine 28(1): 4-14. Link: http://europepmc.org/abstract/med/24445302

Josev EK, et al. (2017) Sleep Quality in Adolescents with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME). *Journal of Clinical Sleep Medicine* 13 (9): 1057-1066. Link:

https://www.ncbi.nlm.nih.gov/pubmed/28760189

Josev EK et al. (2019) Resting-state functional connectivity, cognition, and fatigue in response to cognitive exertion: a novel study in adolescents with chronic fatigue syndrome. *Brian Imaging and Behaviour* [Epub ahead of print]. Link: https://www.ncbi.nlm.nih.gov/pubmed/31102168

Kallesoe K et al. (2020) Feasibility of group-based acceptance and commitment therapy for adolescents (AHEAD) with multiple functional somatic syndromes: a pilot study. *BMC Psychiatry* 20 (457). Link: https://bmcpsychiatry.biomedcentral.com/articles/10.1186/s12888-020-02862-z

Katz BZ and Jason LA. (2013) Chronic fatigue syndrome following infections in adolescents. *Current Opinion in Pediatrics* 25(1): 95-102. Link: https://www.ncbi.nlm.nih.gov/pubmed/23263024

Kennedy G, et al. (2010a) Biochemical and vascular aspects of pediatric chronic fatigue syndrome. *Archives of Pediatrics & Adolescent Medicine* 164(9): 817-823. Link:

https://jamanetwork.com/journals/jamapediatrics/fullarticle/383727

Kennedy G, et al. (2010b) Physical and functional impact of chronic fatigue syndrome/ myalgic encephalomyelitis in childhood. *Pediatrics* 125(6): e1324-e1330. Link: https://www.ncbi.nlm.nih.gov/pubmed/20478937

Knight SJ, et al. (2013a) Paediatric chronic fatigue syndrome: Complex presentations and protracted time to diagnosis. *Journal of Paediatrics and Child Health* 49(11): 919-924. Link:

https://research.monash.edu/en/publications/paediatric-chronic-fatigue-syndrome-complex-presentations-and-pro

Knight SJ, *et al*. (2013b) Interventions in Pediatric Chronic Fatigue Syndrome/Myalgic Encephalomyelitis: A Systematic Review. *Journal of Adolescent Health* 53(2): 154-165. Link:

https://www.ncbi.nlm.nih.gov/pubmed/23643337

Knight SJ, *et al*. (2018) School Functioning in Adolescents With Chronic Fatigue Syndrome, *Frontiers in Paediatrics* 6. Link:

https://www.frontiersin.org/articles/10.3389/fped.2018.00302/full

Knight S, et al. (2019) Epidemiology of paediatric chronic fatigue syndrome in Australia. Archives of Disease in Childhood 104 (8): 733-738. Link: https://adc.bmj.com/content/early/2019/02/23/archdischild-2018-316450

Kristiansen MS et al. (2019) Clinical symptoms and markers of disease mechanisms in adolescent chronic fatigue following Epstein-Barr virus infection: An exploratory cross-sectional study. *Brain, Behaviour and Immunity* [Epub ahead of print]. Link:

https://www.sciencedirect.com/science/article/pii/S0889159119301333

Leonard AJ et al. (2020) The Prevalence of Pediatric Myalgic Encephalomyelitis/Chronic Fatigue Syndrome in a Community-Based Sample. *Child and Youth Care Forum* 1-17. Link: https://link.springer.com/article/10.1007/s10566-019-09543-3

Loades M et al. (2020) How common are depression and anxiety in adolescents with chronic fatigue syndrome (CFS) and how should we screen for these mental health co-morbidities? A clinical cohort study. *European Child and Adolescent Psychiatry* [Epub ahead of print]. Link: https://pubmed.ncbi.nlm.nih.gov/32964335/

Loades ME et al. (2020) Do adolescents with Chronic Fatigue Syndrome (CFS/ME) and co-morbid anxiety and/or depressive symptoms think differently to those who do not have co-morbid psychopathology? *Journal of Affective Disorders* [Epub ahead of print]. Link: https://www.sciencedirect.com/science/article/pii/S0165032719334561

Loades ME et al. (2020) Sleep Problems in Adolescents With CFS: A Case-Control Study Nested Within a Prospective Clinical Cohort. *Clinical Child Psychology and Psychiatry* [Epub ahead of print]. Link: https://tinyurl.com/ybmsmyvd

Loades ME et al. (2020) Assessing functioning in adolescents with chronic fatigue syndrome: psychometric properties and factor structure of the School and Social Adjustment Scale and the Physical Functioning Subscale of the SF36. Behavioural and Cognitive Psychotherapy 48(5):546-556. Link: https://www.ncbi.nlm.nih.gov/pubmed/32234097

Loades ME et al. (2019) Obstacles to recruitment in paediatric studies focusing on mental health in a physical health context: the experiences of clinical gatekeepers in an observational cohort study. *BMC Medical Research Methodology* 19: 89. Link:

The ME Association Index of Published ME/CFS Research

https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/s12874-019-0730-z

Loades ME et al. (2019) Perfectionism and beliefs about emotions in adolescents with chronic fatigue syndrome and their parents: a preliminary investigation in a case control study nested within a cohort. *Psychological Health* 34 (7): 850-866. Link: https://www.ncbi.nlm.nih.gov/pubmed/30821511

Loades ME et al. (2019) Cognitive and behavioural responses to symptoms in adolescents with chronic fatigue syndrome: A case-control study nested within a cohort. Clinical Child Psychology and Psychiatry 24 (3): 564-579. Link: https://journals.sagepub.com/doi/abs/10.1177/1359104519835583

Loades ME et al. (2019) Depressive symptoms in adolescents with chronic fatigue syndrome (CFS): Are rates higher than in controls and do depressive symptoms affect outcome? Clinical Child Psychology and Psychiatry 24 (3): 580-592. Link: https://www.ncbi.nlm.nih.gov/pubmed/30945566

Loades ME et al. (2019) Psychometric properties of the Cognitive and Behavioural Responses Questionnaire (CBRQ) in adolescents with chronic fatigue syndrome. Behavioural and Cognitive Psychotherapy 22: 1-12. Link: https://www.ncbi.nlm.nih.gov/pubmed/31113527

Loades ME, et al. (2018a) Illness beliefs of adolescents with CFS and their parents: the perceived causes of illness and beliefs about recovery. *International Journal of Adolescent Medicine and Health [Epub ahead of print]*. Link: https://www.ncbi.nlm.nih.gov/pubmed/30118437

Loades ME, et al. (2018b) Does fatigue and distress in a clinical cohort of adolescents with CFS correlate with fatigue and distress in their parents? *Child Care, Health Development* 45 (1): 129-137 Link: https://www.ncbi.nlm.nih.gov/pubmed/30342433

Loades ME, et al. (2017) The presence of co-morbid mental health problems in a cohort of adolescents with chronic fatigue syndrome. *Clinical Childhood Psychology and Psychiatry* 1: 1359104517736357. Link: https://www.ncbi.nlm.nih.gov/pubmed/29096528

Loades ME and Chalder T. (2017) Same, Same but Different? Cognitive Behavioural Treatment Approaches for Paediatric CFS/ME and Depression - CORRIGENDUM. Behavioural Cognition and Psychotherapy 45 (4): 432. Link: https://www.ncbi.nlm.nih.gov/pubmed/28436348

Loiacono B et al. (2020) Activity measurement in pediatric chronic fatigue syndrome. *Chronic Illness* [Epuab ahead of print]. Link: https://pubmed.ncbi.nlm.nih.gov/32806955/

Neale FK et al. (2019) Illness duration, mood and symptom impact in adolescents with chronic fatigue syndrome/myalgic encephalomyelitis? *Archives of Disease in Childhood* 105 (9): 911-912. Link: https://adc.bmj.com/content/early/2019/06/13/archdischild-2018-316720.long

Newton F (2019) Meeting the Educational Needs of Young, ME/CFS Patients: Role of the Treating Physician. *Frontiers in Paediatrics* 7:104. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6455006/

Nguyen CB, *et al.* (2017) Whole blood gene expression in adolescent chronic fatigue syndrome: an exploratory cross-sectional study suggesting altered B cell differentiation and survival. *Journal Translational Medicine* 15:102. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5426002/

Nguyen CB, *et al.* (2018) Associations between clinical symptoms, plasma norepinephrine and deregulated immune gene networks in subgroups of adolescent with Chronic Fatigue Syndrome, *Brain Behaviour and Immunity* 889-1591 (18): 30796-30797. Link: https://www.ncbi.nlm.nih.gov/pubmed/30419269

Njølstad BW et al. (2018) 'It's like being a slave to your own body in a way': a qualitative study of adolescents with chronic fatigue syndrome. Scandanavian Journal of Occupational Therapy 26 (7): 505-514 Link: https://www.ncbi.nlm.nih.gov/pubmed/29607759

Norris T, et al. (2017) Chronic Fatigue Syndrome and Chronic Widespread Pain in Adolescence: Population Birth Cohort Study. *Journal of Pain* 18 (3): 285-294. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5340566/

Norris T et al. (2017) Natural course of chronic fatigue syndrome/myalgic encephalomyelitis in adolescents. *Archive of Diseases in Childhood* doi: 10.1136/ archdischild-2016-311198. Link: http://adc.bmj.com/content/early/2017/01/19/archdischild-2016-311198

Norris T, et al. (2017) Natural course of chronic fatigue syndrome/myalgic encephalomyelitis in adolescents. *Archives of Disease in Childhood* 102 (6): 522-528. Link: https://www.ncbi.nlm.nih.gov/pubmed/28104625

Oliver L and Patel K. (2012) Co-morbid conditions in children with chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) – a retrospective case note review of a large cohort. Archives of Disease in Childhood 97 (Supplement 1): A105. Link; http://adc.bmj.com/content/97/Suppl 1/A105.1

Parslow RM et al. (2019) Developing and pretesting a new patient reported outcome measure for paediatric Chronic Fatigue Syndrome/ Myalgic Encephalopathy (CFS/ME): cognitive interviews with children. *Journal of Patient Rep Outcomes* 3 (1): 67. Link: https://www.ncbi.nlm.nih.gov/pubmed/31707635

Parslow RM et al. (2020) Development of a conceptual framework to underpin a health-related quality of life outcome measure in paediatric chronic fatigue syndrome/myalgic encephalopathy (CFS/ME): prioritisation through card ranking. Quality of Life Research 29 (5): 1169-1181. Link: https://link.springer.com/article/10.1007/s11136-019-02399-z?shared-article-renderer#citeas

Pedersen M, et al. (2017) Sleep-wake rhythm disturbances and perceived sleep in adolescent chronic fatigue syndrome. *Journal of Sleep Research* 26 (5): 595-601. Link: https://www.ncbi.nlm.nih.gov/pubmed/28470767

Rimes KA, *et al.* (2017) Stress vulnerability in adolescents with chronic fatigue syndrome: experimental study investigating heart rate variability and skin conductance responses. *Journal of Child Psychology and Psychiatry* 58 (7): 851-858. Link: https://www.ncbi.nlm.nih.gov/pubmed/28276066

Roma M, et al. (2019) Impaired Health-Related Quality of Life in Adolescent Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: The Impact of Core Symptoms. *Frontiers in Pediatrics 7*:26. Link: https://www.frontiersin.org/articles/10.3389/fped.2019.00026/full

Rowe PC, et al. (2017) Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Diagnosis and Management in Young People: A Primer. *Frontiers in Pediatrics* 5: 121. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5474682/

Rowe KS. (2019) Long Term Follow up of Young People With Chronic Fatigue Syndrome Attending a Pediatric Outpatient Service. *Frontiers in Pediatrics*. Link: https://www.frontiersin.org/articles/10.3389/fped.2019.00021/full

Rowe K (2019) Paediatric patients with myalgic encephalomyelitis/chronic fatigue syndrome value understanding and help to move on with their lives. Acta Paediatrica 109 (4): 790-800.. Link: https://onlinelibrary.wiley.com/doi/full/10.1111/apa.15054

Royal College of Paediatrics and Child Health. (2004) Evidence Based Guideline for the Management of CFS/ME (Chronic Fatigue Syndrome/Myalgic Encephalopathy) in Children and Young People. Link: https://www.rcpch.ac.uk/system/files/protected/page/RCPCH%20CFS.pdf

Saugstad OD (2019) Myalgic Encephalomyelitis (ME) in the Young. Time to Repent. Acta Paediatrica [Epub ahead of print]. Link: https://onlinelibrary.wiley.com/doi/full/10.1111/apa.15084

Solomon-Moore E et al. (2019) Physical activity patterns among children and adolescents with mild-to-moderate chronic fatigue syndrome/myalgic encephalomyelitis. *BMJ Paediatrics Open 3* (1). Link: https://bmjpaedsopen.bmj.com/content/3/1/e000425

Speight N (2020) Severe ME in Children. *Healthcare* 8 (3). Link: https://www.mdpi.com/2227-9032/8/3/211/htm

Staples A et al. (2020) Pediatric-Onset Postural Orthostatic Tachycardia Syndrome in a Single Tertiary Care Center. *Journal of Child Neurology* [Epub ahead of print]. Link: https://www.ncbi.nlm.nih.gov/pubmed/32314650

Stoll SVE, *et al.* (2017) What treatments work for anxiety in children with chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME)? Systematic review. *BMJ Open* 7 (9): e015481. Link:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5588976/

Taylor AK, *et al.* (2017) 'It's personal to me': A qualitative study of depression in young people with CFS/ME. *Clinical Child Psychology and Psychiatry* 22 (2): 326-340. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5405821/

Tollit M, et al. (2018) Measuring School Functioning in Students with Chronic Fatigue Syndrome: A Systematic Review. *Journal of School Health* 88 (1): 74-89. Link: https://www.ncbi.nlm.nih.gov/pubmed/29224219

Tucker P, et al. (2011) What to do about attention and memory problems in children with CFS/ME: A neuropsychological approach. *Clinical Child Psychology and Psychiatry* 16(2): 215-223. Link: http://journals.sagepub.com/doi/abs/10.1177/1359104511403585

Webb CM, *et al*. (2011) What stops children with a chronic illness accessing health care: a mixed methods study in children with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME). *BMC Health Services Research* 11: 308. Link:

https://bmchealthservres.biomedcentral.com/articles/10.1186/1472-6963-11-308

Wortinger LA, et al. (2017) Altered right anterior insular connectivity and loss of associated functions in adolescent chronic fatigue syndrome. *PLoS One* 12 (9): e0184325. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5589232/

Wortinger LA, et al. (2017) Emotional conflict processing in adolescent chronic fatigue syndrome: A pilot study using functional magnetic resonance imaging. *Journal of Clinical and Experimental Neuropsychology* 39 (4): 355-368. Link: https://www.ncbi.nlm.nih.gov/pubmed/27647312

Wyller VB and Helland IB. (2013) Relationship between autonomic cardiovascular control, case definition, clinical symptoms, and functional disability in adolescent chronic fatigue syndrome: an exploratory study.

BioPsychoSocial Medicine 7: 5. Link:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3570350/

Wyller VB, *et al.* (2017) Transforming growth factor beta (TGF-β) in adolescent chronic fatigue syndrome. *Journal of Translational Medicine* 15: 245. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5716371/

Wyller VB, *et al.* (2017) Erratum to: Altered neuroendocrine control and association to clinical symptoms in adolescent chronic fatigue syndrome: a cross-sectional study. *Journal of Translational Medicine* 15: 157. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5514483/

13. Government Documents

13.1 Disability support

Department for Work & Pensions. (2013) Evidence Based Review of the Work Capability Assessment: A study of assessments for Employment and Support Allowance. Link:

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/331582/wca-evidence-based-review.pdf

Disability Discrimination Act 1995. Link:

http://www.legislation.gov.uk/ukpga/1995/50/contents

Driver & Vehicle Licensing Agency. (2014) For medical practitioners: At a glance guide to the current medical standards of fitness to drive. *Swansea: Drivers Medical Group*. Link: http://193.62.68.17/wp-content/uploads/2016/02/DVLA-fitness-to-drive.pdf

Equality Act 2010. Link: https://www.legislation.gov.uk/ukpga/2010/15/contents

MS Society, et al. (2011) Employment and Support Allowance Work Capability Assessment review: Making it work for fluctuating conditions. Link: http://www.meassociation.org.uk/wp-content/uploads/Fluctuating_conditions_report_FINAL.pdf

Office for Disability Issues. (2011) Equality Act 2010 Guidance: Guidance on matters to be taken into account in determining questions relating to the definition of disability. Link:

https://www.equalityhumanrights.com/en/publication-download/equality-act-2010-guidance-matters-be-taken-account-determining-questions

Podell R et al. (2020) Documenting disability in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Work [Epub ahead of print]. Link: https://content.iospress.com/articles/work/wor203178

13.2 Economic cost to the UK

2020Health and The OHCF (September 2017) CFS/ME Counting the cost. 'The total cost to the UK economy of CFS/ME in 2014/15 was at least £3.3 billion.' Link: http://www.theoptimumhealthclinic.com/wp-content/uploads/2017/09/Counting-the-Cost.pdf

Araja D et al. (2020) PSY44 Economic burden of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (me/cfs) to patients: comparative study. *Value in Health* 22 (3): s909. Link: https://www.sciencedirect.com/science/article/pii/S1098301519350491

Bibby J and Kershaw A. (2003) How much is ME costing the country? Report prepared by the Survey and Statistical Research Centre, Sheffield Hallam University for Action for ME, 2003, and Action for ME and The ME Association, 1996. Not available.

Castro-Marrero J et al. (2019) Unemployment and work disability in individuals with chronic fatigue syndrome/myalgic encephalomyelitis: a community-based cross-sectional study from Spain. BMC Public Health 19: 840. Link: https://bmcpublichealth.biomedcentral.com/articles/10.1186/s12889-019-7225-2

CFS/ME Working Group. (2002) Report to the Chief Medical Officer of an Independent Working Group. Link: http://www.meassociation.org.uk/wp-content/uploads/CMO-Report-2002.pdf

Close S et al. (2020) The Economic Impacts of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome in an Australian Cohort. Frontiers in Public Health 8: 420. Link: https://www.frontiersin.org/articles/10.3389/fpubh.2020.00420/full

Collin SM, et al. (2011) The impact of CFS/ME on employment and productivity in the UK: a cross-sectional study based on the CFS/ME national outcomes database. *BMC Health Services Research* 11: 217. Link: https://bmchealthservres.biomedcentral.com/articles/10.1186/1472-6963-11-217

Pheby D et al. (2020) The Development of a Consistent Europe-Wide Approach to Investigating the Economic Impact of Myalgic Encephalomyelitis (ME/CFS): A Report from the European Network on ME/CFS (EUROMENE). *Healthcare* 8 (2). Link: https://www.mdpi.com/2227-9032/8/2/88

Stevelink S et al. (2019) Factors associated with work status in chronic fatigue syndrome. Occupational Medicine [Epub ahead of print]. Link: https://www.ncbi.nlm.nih.gov/pubmed/31375832

Vink M and Vink-Niese F (2019) Work Rehabilitation and Medical Retirement for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients. A Review and Appraisal of Diagnostic Strategies. *Diagnostics* 9 (4). Link: https://www.ncbi.nlm.nih.gov/pubmed/31547009

13.3 General reports, debates, and statements

All-Party Parliamentary Group on ME. (2020) Inaugural meeting to re-establish APPG led by Carol Monaghan MP with Dr Charles Shepherd and the MEA providing secretariat. Link: https://www.meassociation.org.uk/2020/01/the-all-party-parliamentary-group-on-me-to-re-convene-please-invite-your-mp-to-attend-09-january-2020/

All-Party Parliamentary Group on ME. (2010) Inquiry into NHS Service Provision for ME/CFS. Link: http://www.meassociation.org.uk/wp-content/uploads/2013/02/APPG-Report-v3.pdf

Chief Medical Officer. (January 2002) A Report of the CFS/ME Working group: Report to the Chief Medical Officer of an Independent Working Group. Link: http://www.meassociation.org.uk/wp-content/uploads/CMO-Report-2002.pdf

House of Commons (2019) Debate. 24 January. Appropriate ME Treatment. Led by Carol Monaghan, MP. Hansard transcript: https://hansard.parliament.uk/commons/2019-01-24/debates/FA1BBC27-37A7-4BFD-A2C0-A58B57F41D4D/AppropriateMETreatment

House of Commons (2013) Debate. 11 February col. 517W. Secretary of State re: ME/CFS WHO classification. Link:

https://publications.parliament.uk/pa/cm201213/cmhansrd/cm130211/text/130 211w0003.htm#13021150000045

House of Commons (2013). Written evidence to Health Select Committee from the ME Association. Link:

https://publications.parliament.uk/pa/cm201415/cmselect/cmhealth/401/401vw11.htm

House of Lords (2007) Debate. 28 February Volume No. 689 col. GC198. Countess of Mar re: ESA and CBT/GET: Link: https://publications.parliament.uk/pa/ld200607/ldhansrd/text/70228-gc0004.htm#07022867000280

House of Lords (2013) Debate. 6 February col. GC65. Countess of Mar re: The PACE Trial. Link:

https://publications.parliament.uk/pa/ld201213/ldhansrd/text/130206-gc0001.htm#130206114000195

House of Lords (2014) Debate. 24 June Volume No. 754 col. WA149. NHS Patient Choice. Link:

https://publications.parliament.uk/pa/ld201415/ldhansrd/text/140624w0001.htm #14062444000241

Joint Formulary Committee (2015). British National Formulary 70: British Medical Association and Royal Pharmaceutical Society of Great Britain. '...authoritative, independent guidance on best practice with clinically validated drug information...' Link: https://pharm.reviews/images/statyi/british-national-formulary-2015.pdf

Westminster Hall (2018) Debate. 20 February. PACE Trial: People with ME. Led by Carol Monaghan, MP. Hansard transcript:

https://hansard.parliament.uk/commons/2018-02-20/debates/990746C7-9010-4566-940D-249F5026FF73/PACETrialPeopleWithME

Westminster Hall (2018) Debate. 21 June. Volume 643. ME: Treatment and Research. Led by Carol Monaghan, MP. Hansard transcript: https://hansard.parliament.uk/Commons/2018-06-21/debates/A49A6117-B23B-4E35-A83B-49FEF0D6074F/METreatmentAndResearch

14. Healthcare

Bae J and Lin JS (2019) Healthcare Utilization in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): Analysis of US Ambulatory Healthcare Data, 2000-2009. *Frontiers in Pediatrics* 7: 185. Link: https://www.ncbi.nlm.nih.gov/pubmed/31139604

Blease C, et al. (2017) Epistemic injustice in healthcare encounters: evidence from chronic fatigue syndrome. *Journal of Medical Ethics* 43 (8): 549-557. Link: https://www.ncbi.nlm.nih.gov/pubmed/27920164

Broughton J, et al. (2017) Adult patients' experiences of NHS specialist services for chronic fatigue syndrome (CFS/ME): a qualitative study in England. *BMC Health Services Research* 17:384. Link:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5457632/

Bush M (2020) Chronic fatigue syndrome: what nurses need to know. *Nursing* 50 (4): 50-54. Link: https://www.ncbi.nlm.nih.gov/pubmed/32195878

Byrne EA (2020) Striking the balance with epistemic injustice in healthcare: the case of Chronic Fatigue Syndrome/Myalgic Encephalomyelitis. *Medical Health Care Philosophy* 23 (3): 371-379. Link: https://www.ncbi.nlm.nih.gov/pubmed/32170570

Cuesta A et al. (2019) Fibromyalgia, Chronic Fatigue Syndrome, and Multiple Chemical Sensitivity: Illness Experiences. *Clinical Nursing Research* [Epub ahead of print]. Link: https://tinyurl.com/y68aa9ak

Collin SM, et al. (2017) Health care resource use by patients before and after a diagnosis of chronic fatigue syndrome (CFS/ME): a clinical practice research datalink study. *BMC Family Practice* 18: 60. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5420108/

Dana J, et al. (2018) Evaluation of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) education materials in local health departments, *Fatigue*: Biomedicine, Health and Behaviour 6 (4). Link: https://tinyurl.com/y3kb7gwo

Janse A et al. (2019) Implementation of stepped care for patients with chronic fatigue syndrome in community-based mental health care: outcomes at post-treatment and long-term follow-up. *Behavioural Cognition and Psychotherapy* 47 (5): 548-558. Link: https://tinyurl.com/y6sowztg

Kingdon C et al. (2020) Health Care Responsibility and Compassion-Visiting the Housebound Patient Severely Affected by ME/CFS. *Healthcare* 8 (3): 197. Link: https://www.mdpi.com/2227-9032/8/3/197/htm

Lapp CW (2019) Initiating Care of a Patient with Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome. *Frontiers in Pediatrics* 6: 415 Link: https://tinyurl.com/y3fnnnyh

Martin-Martinez E and Martin-Martinez M (2019) Varied Presentation of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and the Needs for Classification and Clinician Education: A Case Series. *Clinical Therapeutics* 41 (4): 619-624. Link: https://www.clinicaltherapeutics.com/article/S0149-2918(19)30114-6/fulltext

McPhee G et al. (2019) Monitoring treatment harm in myalgic encephalomyelitis/chronic fatigue syndrome: A freedom-of-information study of National Health Service specialist centres in England. *Journal of Health Psychology* [Epub ahead of print]. Link: https://www.ncbi.nlm.nih.gov/pubmed/31234662

Newton F (2019) Meeting the Educational Needs of Young, ME/CFS Patients: Role of the Treating Physician. *Frontiers in Paediatrics* 7:104. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6455006/

Ryckeghem H, et al. (2017) Exploring the potential role of the advanced nurse practitioner within a care path for patients with chronic fatigue syndrome. Journal of Advanced Nursing 73 (7): 1610-1619. Link: https://www.ncbi.nlm.nih.gov/pubmed/28000331

Strand EB et al. (2019) Myalgic encephalomyelitis/chronic fatigue Syndrome (ME/CFS): Investigating care practices pointed out to disparities in diagnosis and treatment across European Union. *PLoS One* [Epub ahead of print]. Link: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0225995

Sunnquist M, et al. (2017) Access to Medical Care for Individuals with Myalgic Encephalomyelitis and Chronic Fatigue Syndrome: A Call for Centers of Excellence. Modern Clinical Medicine Research 1 (1): 28-35. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5510655/

Timbol CR and Baraniuk JN (2019) Chronic fatigue syndrome in the emergency department. *Open Access Emergency Medicine* 11: 15-28. Link: https://www.ncbi.nlm.nih.gov/pubmed/30666170

Walsh RS et al. (2020) Predicting GP Visits: A Multinomial Logistic Regression Investigating GP Visits Amongst a Cohort of UK Patients Living With Myalgic Encephalomyelitis. *BMC Family Practise* 21 (1): 105. Link: https://tinyurl.com/y8tbfokl

The ME Association: Please support our vital work

We are a national charity working hard to make the UK a better place for people whose lives have been devastated by an oftenmisunderstood neurological disease.

If you would like to support our efforts and ensure we are able to inform, support, campaign, and invest in biomedical research, then please donate today.

Just click the image opposite or <u>click here</u> for one-off donations or to establish a regular payment. You can even establish your own <u>fundraising event</u> on JustGiving.

Or why not join the ME Association <u>as a member</u> and be part of our growing community?

For a monthly (or annual) subscription you will also receive <u>ME Essential</u> – quite simply the best M.E. magazine!

ME Association Registered Charity Number 801279

